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Mobile robots struggle to integrate seamlessly in crowded environments such as pedestrian scenes, often
disrupting human activity. One obstacle preventing their smooth integration is our limited understanding of
how humans may perceive and react to robot motion. Motivated by recent studies highlighting the benefits
of intent-expressive motion for robots operating close to humans, we describe Social Momentum (SM), a
planning framework for legible robot motion generation in multiagent domains. We investigate the properties
of motion generated by SM via two large-scale user studies: an online, video-based study (N = 180) focusing
on the legibility of motion produced by SM and a lab study (N = 105) focusing on the perceptions of users
navigating next to a robot running SM in a crowded space. Through statistical and thematic analyses of
collected data, we present evidence suggesting that (a) motion generated by SM enables quick inference of
the robot’s navigation strategy; (b) humans navigating close to a robot running SM follow comfortable, low-
acceleration paths; and (c) robot motion generated by SM is positively perceived and indistinguishable from a
teleoperated baseline. Through the discussion of experimental insights and lessons learned, this article aspires
to inform future algorithmic and experimental design for social robot navigation.
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1 INTRODUCTION
Imagine a crowded city street. It is easier to picture humans smoothly flowing with the crowd as
they navigate toward their destination. However, this skill of social navigation, which is so natu-
ral and intuitive for humans, is challenging forrobots to master. Indeed, the problem of enabling
robots to traverse crowded pedestrian environments in a socially competent fashion has received
considerable attention over the past three decades [44, 47, 61, 63, 69]. Deploying a mobile robot in
a human environment requires paying significant attention to topics related to human safety and
comfort. To this end, researchers drawn insights and frameworks from diverse fields ranging from
motion planning and prediction to design research and social sciences.

Earlier work looked at mechanisms of reproducing collision-avoidance maneuvers. Often, hu-
mans are approximated as dynamic obstacles [24, 57], and the robot reacts to their motion or
projected future path to avoid collisions. This is known to result in problematic interactions [22];
humans are intelligent agents with sophisticated mechanisms of inference and decision making
that are sensitive to the motion of others. In fact, human navigation in crowds is known to be
a highly cooperative activity—humans tend to expect others to adjust their motion and share the
responsibility for collision avoidance [80]. Failing to account for the existence of such mechanisms
in humans is known to result in suboptimal and often oscillatory robot behavior that appears to be
uncomfortable [22, 72]. To account for human expectations, a body of work has focused on mathe-
matically formalizing and reproducing social norms such as passing from the right [37], respecting
humans’ personal space [38], or civil inattention [41]. In practice, the way humans navigate can
be fluid and dependent on the context (e.g., culture, type of environment, density of crowd) or
variable across individuals. Sometimes, physical constraints arise or social norms are violated but
humans quickly and safely adapt. Humans tend to follow subconscious insights and instincts but
also social rules [28, 29, 80] that are often hard to understand and quantitatively model in robots.
Thus, enumerating and reproducing a fixed set of social rules may be impractical for handling the
complexity of real-world situations.

Motivated by these observations, recent work has focused on incorporating models of multi-
agent interaction into the robot’s decision making. Some approaches [25, 65, 73] employ crowd
motion simulations [32] as prediction mechanisms for human motion. The behavior generated
by such models is dependent on a set of parameters defining considerations such as preferred
speed, proximity to others, and so on. Tuning these parameters for navigation among humans is
not trivial. This has motivated a large body of work to learn models of pedestrian dynamics from
data generated using simulation engines [32, 76], inverse reinforcement learning [42], Gaussian
process regression [72], sequence-to-sequence models [50], or deep reinforcement learning [21].
While some of these approaches are capable of producing safe robot motion in human spaces, they
tend to suffer from the high inherent complexity [15] (sample or computational) induced by rea-
soning about the motion of multiple agents over a future time window at planning time. Further,
their emphasis is chiefly on collision avoidance, ignoring important aspects that govern interac-
tion, such as human perception and inference mechanisms.

Recently, a few studies have highlighted that legible robot motion tends to reduce the planning
effort [12, 43] and increase comfort and productivity [17] for nearby humans. Despite the recog-
nized value of legible robot motion for human–robot interaction applications, existing work has
focused on scenarios in structured domains involving a single human agent. However, naviga-
tion in real-world pedestrian spaces is inherently multiagent, motivating the development of new
frameworks for modeling and generating legible robot motion in the presence of multiple dynamic
agents.

In this article, we take an interaction-first approach to social robot navigation. We present the
design principles, algorithmic formulation and extensive evaluation of a planning framework for
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Fig. 1. Roadmap of evaluation followed in this article.

multiagent humans spaces. First, we introduce a representation inspired by the physical quantity
of angular momentum that factors the unfolding multiagent dynamics in a crowded scene into a
set of likely pairwise collision avoidance maneuvers between the robot and other agents. Based
on this representation, we design an objective function that quantifies the extent of the agree-
ment between a robot action and the perceived preferences of other agents over passing sides. By
maximizing this objective, the robot may signal its intention of complying with these perceived
preferences (Figure 2). Based on this insight, we design a decision-making policy—called Social

Momentum (SM)—that chooses actions balancing between this objective and progress toward
the robot’s destination.

Through an online video-based user study (N = 180), we show that this type of decision making
can be perceived as legible in the sense that it enables an observer to quickly and confidently infer
the robot’s intention over a passing side. We then deploy this mechanism on a real robot and
evaluate its performance via a lab-study with groups of human subjects (N = 105). Key findings of
this study include that (a) humans are more likely to follow low-acceleration paths next to a robot
running our framework compared to a set of baselines and (b) our framework is perceived just
as well as a Wizard-of-Oz baseline in which a human operator teleoperates the robot. Our overall
findings suggest that even a simple interaction-aware policy can be sufficient for navigation in
close proximity with humans in selected settings. While our policy may struggle in more complex
domains, it does not impose strong requirements on datasets or on-board computation like existing
state-of-the-art approaches. A visual roadmap of the studies described is presented in Figure 1.

1.1 Contributions

In summary, with this article, we make the following contributions that expand upon our prior
work [51, 53]:

• We conduct an extensive review of related work on algorithmic approaches to social robot
navigation, clearly placing our framework with respect to the rich literature in the field
(Section 2).
• We present a unified discussion of our work on the design and evaluation of our Social

Momentum framework [51, 53]. We clearly lay out the principles from psychology and
sociology literature that inspired our approach (Section 3) and build upon them to frame
our algorithm design (Section 4).
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Fig. 2. The key idea of our framework: achieving consensus over a joint strategy of collision avoidance using
the robot’s path shape as a communicative modality.

• We conduct a new, extended statistical analysis of the Likert-scale questionnaire dataset
collected in our lab study [51] to better understand the perceptions of humans about a robot
navigates close to them (Section 7.1). Through a factor analysis methodology, we show that
human perceptions of robot behavior are driven by impressions along five key categories,
namely social competence, intelligence, human comfort, predictability, and discretion.
• We conduct a qualitative thematic analysis of the dataset extracted from responses of

participants to open-form questions collected in our lab study [51] (Section 7.2). We
elaborate on participants’ attitudes toward the robot, which revolve along key themes such
as robot navigation intention, proximity, robot performance, and human emotions.
• We conclude with a comprehensive, unified discussion of all findings. We include experi-

mental insights, lessons learned and discuss their implications for the future of social robot
navigation research (Section 8).

2 RELATED WORK

Robot navigation in crowded human environments requires a series of algorithmic components
including motion prediction, motion planning, and control, among others. As such, research in
the field interfaces with a number of neighboring communities including crowd simulation, path
tracking, trajectory prediction, multirobot systems, autonomous driving, and more. Further, the
inherently close interaction between the robot and human subjects motivates the incorporation
of features related to social awareness and comfort. Thus, social robot navigation also interfaces
significantly with the field of design and often draws insights from psychology, sociology, and
human–robot interaction. Taking into account these interfaces, in this literature review, we specif-
ically focus on frameworks that were developed to be deployed on real robots in crowded envi-
ronments. We review relevant works, highlighting their algorithmic foundations and evaluation
methodologies.

2.1 Initial Efforts: Humans as Obstacles

First efforts in the field of social robot navigation were motivated by specific real-world applica-
tions. For instance, Rhino [10] and Minerva [71] were some of the first known robotic systems to
be deployed as tour guides in museums in Bonn, Germany, and Washington DC, USA, in 1997 and
1998, respectively. These robots successfully served thousands of tour guide requests and navigated
alongside museum visitors over a span of weeks. Their performance set the stage for real-world
challenges, such as the AAAI Mobile Robot Challenge, organized by the American Association
for Artificial Intelligence, which attracted wide interest and participation [54, 56]. Although these
deployments featured remarkable system development and integration efforts, their underlying
navigation frameworks [24, 57] treated humans as non-reactive obstacles without explicitly mod-
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eling interaction phenomena or humans’ decision-making strategies. This assumption has gener-
ally sufficed to provide a practical solution to the crowd navigation problem, and it has inspired a
significant amount of research over the years [7, 23, 60]. However, it has been empirically observed
that this assumption can create practical problems including the “reciprocal dance” [22]: The fail-
ure of the robot to infer the human’s intended motion results in the robot choosing a velocity that
emerges as surprising to the human, who in turn reacts unpredictably to the robot, contributing
to a short oscillatory interaction. Such issues motivated the introduction of models for reasoning
about uncertainty in crowd navigation.

2.2 Reasoning about Uncertainty

Motivated by the practical issues caused by the lack of predictive models, a second wave of ef-
forts on the crowd navigation problem focused on methodologies for reasoning about uncertainty.
For instance, Du Toit and Burdick [18] present a receding-horizon control framework that incor-
porates predictive uncertainty in the robot’s decision making. Thompson et al. [70] introduce a
probabilistic model of human motion based on individual human intent inference, designed to
assist in motion planning problems. Joseph et al. [34] propose a Bayesian framework reasoning
about individual human motion patterns to inform a motion prediction pipeline. Similarly, Ben-
newitz et al. [8] extract patterns of human motion in a crowded environment and derive a hidden
Markov model to perform online human motion prediction. Unhelkar et al. [75] introduce a mo-
tion prediction framework that makes use of biomechanical features to anticipate human turning
actions.

Despite the introduction of principled models for reasoning about uncertainty, these works treat
human agents as individual non-interactive entities. The lack of explicit coupling over the possi-
ble motion of human agents often results in an uncertainty explosion as observed by Du Toit and
Burdick [18]. In practice, this may cause the robot to overestimate the uncertainty over the unfold-
ing crowd motion and thus falsely infer that no collision-free paths exist. This phenomenon may
effectively yield the freezing robot problem as described by Trautman et al. [72], who pointed out
that a practical way to resolve it is to enable the robot to explicitly expect human cooperation.

2.3 Interaction in Social Robot Navigation

Motivated by phenomena such as the reciprocal dance [22] and the freezing robot problem [72], a
relatively recent wave of work focuses on explicitly modeling interaction. Unlike conventional in-
stances of the robot navigation problem that take place in isolated, structured environments, social
robot navigation takes place in domains that are inherently dynamic, multiagent, and uncertain.
Modeling the interaction dynamics among a set of multiple navigating agents is a computation-
ally hard problem: Related instances of the problem such as inference over dynamic Bayesian
networks [15] have been shown to be NP-hard. However, humans are remarkably effective in
avoiding conflicts with others in crowded domains. Human effectiveness is largely attributed to
sophisticated mechanisms of cooperation [28, 35, 80], often realized implicitly via channels of im-
plicit, nonverbal communication [4, 16, 79].

2.3.1 The Human Paradigm. Several sociology studies on pedestrian navigation have pointed
out the cooperative character of collision avoidance in crowds. From a broad perspective, Karp
et al. [35], in their definition of the Mini-Max Hypothesis of Urban Life, specify that “urbanites
seek to minimize involvement and to maximize social order.” Goffman [28] tailors this idea to
crowd navigation in his concept of “civil inattention”: upon acknowledging the presence of a fellow
pedestrian via eye gaze, a pedestrian often looks away “so as to express that he does not constitute
a target of special curiosity or design.” This process hints toward the existence of some form of
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trust across pedestrians: trust that the responsibility for collision avoidance will be shared by both
agents. Building on this concept, Wolfinger [80] introduces the concept of the pedestrian bargain
to describe the mechanism of trust that sustains social order in crowd navigation. This mechanism
is based on two simple rules: (1) “people must behave like competent pedestrians” and (2) “people
must trust co-present others to behave like competent pedestrians.” Trust in the rules of the bargain
constitutes the basis of smooth co-navigation in human environments, as it enables pedestrians to
plan with the expectation that others will also behave competently and thus cooperate to resolve
potential conflicts. On top of these ideas, the theory of Proxemics by Hall [31] specifies a series of
considerations related to social spaces and comfort in public places.

2.3.2 Reproducing Social Conventions. Some works have focused on generating motion that
reproduces selected social conventions and norms observed in human navigation. For instance,
Kirby et al. [39] introduce a constrained optimization-based algorithm that incorporates consider-
ations of passing side and personal space [31] into the robot’s decision making. Sisbot et al. [66]
present a cost-based planner that employs a set of social costs to generate motion that is visible
and safe around humans. Knepper and Rus [41] distill the concept of civil inattention [28] into a
multirobot path planner.

2.3.3 Modeling Interaction. Some other works focus on capturing the dynamics of interaction
to inform prediction and planning. For example, Warren [78] introduces a dynamical systems ap-
proach describing organization across tasks including human navigation. Luber et al. [46] learn a
set of dynamic navigation prototypes and use them to design dynamic costmaps that capture objec-
tive and subjective human navigation objectives. Moussaïd et al. [58] employ behavioral heuristics
to model pedestrian behavior in public spaces and show how humans adjust their speed and direc-
tionality guided by distance-based visual features. G. Ferrer [25] integrate human motion predic-
tions generated with a Social Force model [32] variant into a sampling-based planning framework.
The works of Ziebart et al. [81], Vasquez et al. [77], Henry et al. [33], Kim and Pineau [37], and
Kretzschmar et al. [42] employ inverse reinforcement learning as a technique to recover features
of human navigation objectives and use them to design motion planners for humanlike robot nav-
igation in a variety of scenarios. Trautman et al. [72] introduce a Gaussian Process-based model
for motion prediction that accounts for interdependencies arising as a result of human cooperative
collision avoidance and show how it can be used to enable safe robot navigation in dense crowds.
Chen et al. [14] and Everett et al. [21] present deep reinforcement learning models that implicitly
capture elements of cooperative collision avoidance from observations of multiagent interactions.
Che et al. [13] integrate modalities of explicit and implicit communication into a motion planner
to generate plans that are easier for humans to read. Finally, focusing on autonomous driving do-
mains, Sadigh et al. [64] and Roh et al. [62] show that a motion planner with a model of multiagent
dynamics may leverage communicative signals encoded in robot motion to influence the behavior
of other vehicles. We note that there has been relevant work in this domain from the field of social
motion prediction [63], but the focus there is not on robot navigation but rather on object tracking.

2.3.4 Our Perspective: Leveraging the Mathematical Structure of Interaction. Our past work [49,
50, 52] introduces a unique perspective in social robot navigation, proposing frameworks that ex-
plicitly model cooperative collision avoidance in multiagent navigation through the use of math-
ematical representations inspired by work in low-dimensional topology. Topological representa-
tions elegantly capture salient features of multiagent interactions into objects of dual algebraic
and geometric nature, enabling the use of both symbolic reasoning and learning techniques. For
instance, we employed topological braids [3, 9] to develop motion planners that explicitly reason
about the unfolding topological patterns of multiagent interactions in crowded domains [48, 50, 52].
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The high computational cost of these methods motivated us to look for more tractable alternatives.
To this end, we employed alternative formalisms such as winding numbers [49] and angular mo-
mentum [51, 53] as approximations of multiagent interaction dynamics that retain the benefits of
topological reasoning at a low computational cost. In this article, we expand and build upon our
analysis of the performance of our Social Momentum motion planner [53], presenting additional
quantitative and qualitative evidence.

2.4 Experimental Evaluation in Algorithmic Social Robot Navigation

Deployment and experimental testing in the presence of humans is an important component of
evaluating social robot navigation frameworks. In this section, we summarize the methodologies
applied by published studies over the past three decades and argue for the uniqueness of the ex-
perimental procedure followed by our work. Broadly, we observe three main trends in existing
validation methodologies: (a) works illustrating proof-of-concept demonstrations in lab environ-
ments or public settings, (b) studies presenting controlled experimental validation in the lab, and
(c) field studies conducted in public environments.

2.4.1 Experimental Demonstrations. A number of works validate their proposed approaches
via proof-of-concept demonstrations in the presence of humans. For instance, Bennewitz et al. [8]
report a series of 10 experiments involving interactions between a mobile robot and navigating hu-
mans under semi-controlled settings in a hallway. Sisbot et al. [66] document a series of navigation
interactions between a robot running their framework and a human in a lab environment. Park
et al. [60] test their control framework on a robotic wheelchair inside a corridor of an academic
building and report a set of successful collision-avoidance encounters. Kretzschmar et al. [42] also
deploy their model on a robotic wheelchair documenting a set of experiments in a narrow hall-
way under controlled settings. Chen et al. [14] document an experimental demo involving a robot
navigation experiment in a crowded area of an academic building.

2.4.2 Lab Studies. Pacchierotti et al. [59] test their control framework with a study involving
an autonomous robot navigating next to human subjects at a corridor under controlled settings.
They present their findings from the interactions of 10 participants with a robot exhibiting differ-
ent navigation strategies corresponding to different passing distances. Kirby et al. [39] and Kirby
[38] present a user study involving 27 human subjects navigating alongside a robot in an aca-
demic hallway. Kruse et al. [43] document a series of interactions between a mobile robot and a
human subject in a lab study involving 10 participants. Truong and Ngo [73] document a series
of interactions between a robot running their planning algorithm and human participants in a lab
environment. Our past work [51] featured an experimental validation of our planning framework
[53] in a lab experiment involving interactions between a navigating robot and three human sub-
jects at a time in dense navigation settings, yielding a total sample of 105 participants. Lo et al.
[45] evaluate a series of robot collision-avoidance strategies on a self-balancing mobile robot in a
lab study with 98 human subjects.

2.4.3 Field Studies. Another common approach involves deploying robots in the wild in pub-
lic environments. Burgard et al. [10] deployed the Rhino guide robot in the Museum of Bonn in
Germany in 1997 and documented thousands of in-person and virtual interactions between the
robot and visitors over 47 hours of runtime spanning 6 days. Thrun et al. [71] deployed Minerva,
a second-generation robot tour guide, at a Smithsonian Museum in Washington, DC, in 1998 and
also documented thousands of interactions with visitors for two weeks. Both studies documented
statistics related to performance, collision avoidance, and visitors’ impressions of the robot. Foka
and Trahanias [23] report logs and performance aspects upon running their robot for 70 hours in
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an indoor academic building. Shiomi et al. [65] test their navigation framework through a 4-hour
field study in a shopping mall. Trautman et al. [72] test their navigation framework on a robot
in a field study comprising 488 robot runs in a crowded cafeteria. Kato et al. [36] test their ap-
proach on a humanlike robot employee in a crowded mall and record interactions with 130 people.
Kim and Pineau [37] evaluate their framework on a robotic wheelchair in a crowded hallway over
10 field runs.

2.4.4 Our Approach: Extensive Subjects Research. This article documents our efforts in experi-
mentally validating our Social Momentum planning framework [53]. Our experimental evaluation
is split across two main studies: (a) an online, video-based user study that involved 180 human
users and (b) a lab study featuring 105 human subjects navigating in close proximity with a telep-
resence robot [1]. To the best of our knowledge, our evaluation is unique in terms of sample size,
experimental settings considered (close but controlled interactions in a dense environment), goals
(evaluation of group interactions with a navigating robot), and thoroughness. We employ both
quantitative and qualitative measures of interaction, aiming at documenting an in-depth, holistic
insight over the features of our approach. Our empirical findings and remarks may help inform
the design of future studies for evaluating social robot navigation frameworks.

3 FOUNDATIONS

Consider a robot r navigating in an obstacle-free workspace Q ⊂ R2 where n human pedestrians
are also navigating. Denote by q ∈ Q the state of the robot and by hi the state of a human pedes-
trian i ∈ N = {1, . . . ,n}. The robot starts from a state sr ∈ Q and navigates toward a destination
dr ∈ Q. Similarly, human i starts from state shi

∈ Q and navigates toward a destination dhi
∈ Q.

Each agent a ∈ {r ,h1, . . . ,hn } is following a control policy of the form πa : Q → Va mapping
their current state qa to a control input (velocity) va ∈ Va , where Va is a space of velocities. This
policy is assumed to account for (a) progress to destination, (b) collision avoidance, and (c) social
compliance. Agents are not aware of each other’s policies, destinations or trajectories a priori but
are assumed to be able to perfectly observe each others’ state. Our goal is to design a policy πr that
enables the robot r to reach dr while avoiding hindering co-navigating humans. In particular, we
are interested in enabling the robot to avoid collisions but also navigate in a way that is perceived
as socially competent by nearby humans.

3.1 Socially Competent Navigation as Cooperative Intent Expressiveness

How can we engineer robot motion that is perceived as socially competent in a dynamic multiagent
environment? Although there is no clear consensus among researchers about an exact and unifying
definition of what constitutes socially competent behavior in a navigation domain, we build our
framework around foundations extracted by studies from the social sciences and human–robot
interaction research. In particular, our perspective is driven by three key observations: (a) social
order in pedestrian navigation in crowds appears to rely heavily on cooperation [80], (b) from
an early age, humans develop mental models that enable them to interpret observed actions by
assigning them context-specific goals [16], and (c) intent-expressive robot motion in joint human–
robot collaboration tasks improves performance [12]. Based on these insights, a central thesis in
our approach is that under the assumption of human cooperation (rationality) in navigation, intent-
expressive robot motion with respect to an appropriately defined notion of a goal may enable more
efficient, minimally disruptive human–robot interactions.

3.1.1 Cooperation. We follow the insights of the sociology studies highlighting the cooperative
nature of human navigation as described in the Mini-Max Hypothesis of Urban Life [35] or the
Pedestrian Bargain [80]. We view these insights as guiding principles to our design. By explicitly
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modeling cooperation, we can enable a robot to cooperate with and expect cooperative behavior
from nearby humans, much like humans themselves do. We hypothesize that by doing so, we could
enable robots to blend in more naturally in pedestrian spaces.

For our purposes, cooperation corresponds to the shared responsibility between the robot and
humans for avoiding collisions with each other.

3.1.2 Inference. Cooperation in crowd navigation relies heavily on the extraction of inferences
about the motion of others. For humans, these motion inferences may be quite sophisticated, con-
ducted by mechanisms shaped by evolution, personal experience, context, the understanding of
biomechanical constraints, and so on. However, at their core, these inferences seem to follow a
specific blueprint: Humans, from an early age tend to innately interpret observed actions as goal-
directed [16] in a given context.

Despite their typically limited past experiences with robots and understanding of robot kine-
matics, dynamics, and computational capabilities, we hypothesize that non-expert humans may
still be able to connect simple robot actions to robot intent. Conversely, in our setup, we expect
the human motion to be indicative of the human intent.

3.1.3 Legibility. Legibility [17], or Readability [12], is an important property of motion in tasks
conducted in the presence of a human observer. Dragan and Srinivasa [17] defined Legibility as
the property of motion that enables an observer to infer quickly and confidently the correct goal
of an actor, given observation of the actor’s past actions. Humans employ a variety of modalities
to express intent: Body posture, eye gaze, gestures, and verbal communication are only a subset
of the information streams that humans may leverage to broadcast intention signals. Robots are
limited in the set of modalities available for communication of their intentions by their design. For
this reason, many human–robot interaction applications feature implicit communication mecha-
nisms [40] encoding robot intent into otherwise purely functional motion. In these applications,
implicitly communicative robot motion has been shown to enable effective human–robot collabo-
ration [12] and reduced planning effort for humans [11].

In our application, we assume that the robot may only use the modality of navigation path shape
to communicate, due to its universality in mobile robot platforms.

3.1.4 What Is the Proper Notion of a Goal? A central notion in the emergence of inferences [16]
and the generation of legible motion [17] is the notion of a goal or intent. Existing works on legible
motion generation tend to associate the notion of a goal or intention with a point in a configura-
tion space (e.g., References [17, 43]). In a static and structured environment, where the dynamics
of interaction among agents is predictable or known a priori, this is a well-motivated modeling
decision, as the observers’ belief could be assumed to be an isolated relationship between an ob-
served motion and a potential destination. However, in dynamic and unstructured environments,
such as typical pedestrian navigation domains, where the dynamics of interaction among multiple
agents is rich, knowledge only of an agent’s destination may be insufficient to inform others of the
agent’s immediate behaviors. This highlights the need for a new consideration of legibility that
captures interactions with neighboring agents.

Past work of ours has employed topological representations such as braids [48, 50, 52] and topo-
logical invariants [49] to encode intentions in multiagent navigation settings. However, the high
computational cost associated with running those algorithms motivated us to pursue tractable
approximations that would retain the salience of topological features. To this end, we developed
the SM planning framework [53], which employs a physics-inspired approach to encoding the
topology of passing side in navigation as the angular momentum between a pair of agents.
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Fig. 3. Social Momentum. A human and a robot navigate toward opposing sides of a workspace. The initial
configurations of the agents make it hard for the human to predict the emerging avoidance strategy (“right”
or “left”). The robot detects a slight inclination toward the “right” strategy and acts legibly to facilitate human
inference.

4 SOCIAL MOMENTUM: A PLANNER FOR LEGIBLE ROBOT NAVIGATION

In this section, we recap the SM planning framework [53]. The planner is based on modeling
pairwise passing-side intentions as angular momenta. Under this model, our planner generates
legible motion that attempts to reconcile the (potentially incompatible) human–robot passing-side
intentions.

4.1 Angular Momentum for Collision Avoidance

Consider the scene of Figure 3, where a robot r and a human h navigate in an obstacle-free
workspace. The robot lies at qr , moving with velocity vr , whereas the human is positioned at
qh and moves with velocity vh . The two agents form a dynamical system; representing them as
unit-mass particles, we may derive the angular momentum of the system as

Lrh = pC
r ×vr + p

C
h ×vh , (1)

where

pC
r = qr − pC , pC

h = qh − pC , (2)

are agents’ positions, defined with respect to their center of mass,

pC = (qr + qh ) /2. (3)

For a system of two agents on the horizontal plane, the angular momentum is a 3-vector
normal to the plane, pointing along the positive direction of the z-axis for counterclockwise agent
rotations (see Figure 3) and along the negative direction of the z-axis for clockwise rotations.
These correspond to the agents passing on the right- and left-hand sides of each other, respectively.
The magnitude of the momentum depends jointly on the distance between the agents and also
on the relative angle between agents’ velocities. Inspecting Equation (1), we can see that larger
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distances and antiparallel velocities increase |Lrh |. Thus, the angular momentum is indicative of
the tendency of two agents for picking a passing side—the larger the magnitude | |Lrh | |, the higher
the certainty over the passing side given by the sign of Lrh

z , the z component of Lrh .

4.2 The Social Momentum Algorithm

This intuition represents the key insight underlying the design of our planner. By contributing
toward increasing the magnitude of the angular momentum along its current directionality, an
agent reinforces the currently established passing side. Generalizing to a multiagent environment,
by selecting an action vr ∈ Vr that increases the magnitude of the pairwise momenta with all
other agents hi , i ∈ N , the robot reinforces the currently established sides of passing. To enable
this decision-making strategy, we construct the Social Momentum objective L : Vr → R, defined
as:

L(vr ) =
⎧⎪⎨
⎪
⎩

∑
i wi | |L̂rhi (vr ) | |, if (Lrhi )�L̂rhi (vr ) > 0, ∀i ∈ N

0, otherwise
, (4)

where L̂rhi (vr ) denotes the expected pairwise momentum between agents r andhi , upon the robot
taking an action in consideration,vr , and the humanhi moving with its current velocityvhi

. Lrhi is
the current pairwise momentum between r andhi , andwi ∈ R is an importance weight prioritizing
reacting to agents that are closer. The sign of the quantity (Lrhi )�L̂rhi (vr ) determines whether the
projected updated momentum L̂rhi (vr ) is pointing toward the direction of the current momentum
Lrhi . A positive sign corresponds to an action that preserves the current momentum sign and thus
the currently preferred pairwise avoidance protocol. A negative sign indicates inversion of the
established pairwise avoidance protocol, which is undesired. For this reason, an action that results
to inversion of at least one pairwise momentum is assigned a score of zero.

The Social Momentum objective is the core of the Social Momentum planning algorithm (SM). The
planner balances between intent-expressiveness (represented by L) and efficiency, represented by
an efficiency function E . The algorithm relies on frequent replanning: At every planning cycle,
it selects an action that corresponds to the optimal compromise between progress to the agent’s
destination and legible avoidance of others as follows:

v∗r = argmax
vr ∈Vr

E (vr ) + λL(vr ), (5)

where λ ∈ R is a temperature parameter accounting for scaling and weighting of the two quantities.
As shown in Equation (4), if an action results in inversion of momentum between the robot and
at least one other agent, then it will be scored minimally (zero). In case all actions are momentum-
inverting, the action selected for execution will be purely based on the efficiency objective for that
timestep. Under the assumption of cooperation [80], humans will share the responsibility of avoid-
ing an imminent collision with the robot, and they will react with actions that contribute toward
collision avoidance. Gradually, the system of agents will converge to an equilibrium satisfying the
updated preferences of all agents.

We define the progress function E : Vr → R to be the inverse of the length of the unobstructed
line to the agent’s destination. The action space Vr comprises a pre-sampled discrete set of actions
of finite duration that are executable by the agent. Finally, the weightwrhi is chosen as the inverse
of the distance between the robot r and agent hi .

Algorithm 1 describes the SM algorithm in pseudocode. At the start of execution, the algorithm
initializes a list of reactive agents R to contain all perceived human agents. While the robot is
further than a distance threshold δ from its destination, a replanning cycle runs. The function
check_collision tests the action space V for collisions with human agents and returns a set
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Fig. 4. Social Momentum: The robot (depicted in red color) is moving toward its destination (represented as
a red landmark). while complying with its pairwise momenta with all other agents.

ALGORITHM 1: SM(qr ,Q,Vr ,dr ,AtGoal ,v
∗
r )

Input: qr − robot state; H = (h1, . . . ,hn ) − list of human agents; Q =
(
qh1 , . . . ,qhn

) − list of
human states;Vh =

(
vh1 , . . . ,vhn

) − list of human velocities; Vr − robot action set; dr − robot
destination; λ − optimization weight; δ − destination distance threshold.

Output: v∗r − velocity selected
1: R ← H � List of reactive agents
2: while | |qr − dr | | > δ do

3: Vcf ← check_collision(R,Q,V )
4: R ← update_reactive(Q,Vh ,R)
5: if R � ∅ then

6: v∗r ← optimize_momentum(Q,Vcf , λ,dr )
7: else

8: v∗r → optimize_efficiency(Vcf ,dr )

9: return v∗r

Vcf ⊆ V of collision-free actions under the assumption that agents maintain their velocities for
the next timestep. Then, function update_reactive determines the subset of agents R to which
the planning agent should be reacting: Only agents that lie in front of the planning agent (i.e.,
agents lying from −90◦ to +90◦ from the robot’s direction of motion; see Figure 4) are consid-
ered. In case R � ∅, the planning agent determines a legible action v∗r by compromising between
Progress to destination and Social Momentum (function optimize_momentum); otherwise, the al-
gorithm switches to progress maximization mode (function optimize_efficiency). Termination
occurs once the agent comes closer than δ to its destination.

4.3 Simulation Study

We conduct a simulation study in which we examine the properties of motion generated by SM
in scenarios involving multiple agents navigating in close proximity. Our goal is to understand
features of collective behavior that could affect the perceptions of human observers over agents’
intentions.
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Fig. 5. Simulation setup. Four agents, represented as colored disks, are placed along the circumference of the
circular workspace. Each agent is headed toward the landmark of the same color. Figure 5(a) illustrates the ini-
tial scenario state. Figure 5(b) depicts an execution with high Topological Complexity index but low Path Ir-
regularity. Figure 5(c) depicts an execution with low Topological Complexity index but high Path Irregularity.

4.3.1 Experimental Setup. We consider a setup in which groups of holonomic homogeneous
agents (agents running the same navigation algorithm) navigate in a shared circular workspace
Figure 5(a). We specifically design navigation scenarios giving rise to complex multiagent encoun-
ters. Each scenario is generated through the following steps: (1) the workspace circumference is
partitioned into n arcs of equal length; (2) each arc is assigned to an agent; (3) each agent is placed
at a random, collision-free starting position on their arc; and (4) each agent is assigned a desti-
nation that is antipodal to their starting location and lies on the workspace circumference. The
workspace boundary is a circle with a diameter of 5 m, whereas the agents are discs of diameter
0.6 m. We consider four different classes of scenarios, each corresponding to a different number of
agents, ranging from three to six. For each class, we generate 200 scenarios at random.

4.3.2 Conditions. We consider three experimental conditions: (1) Social Momentum, (2) the So-

cial Force (SF) model [32], and the (3) Optimal Reciprocal Collision Avoidance (ORCA)

framework [76]. Each condition corresponds to a different algorithm executed by all agents. The
three algorithms selected represent distinct algorithmic designs resulting in behaviors with qual-
itatively distinct properties: ORCA is theoretically and empirically shown to prioritize efficient
behaviors; SF is purely reactive and often follows highly suboptimal paths to avoid collisions; and
SM was designed to exaggerate motions to increase intent expressiveness over passing sides. Note
that the SF and ORCA baselines are algorithms designed to produce realistically looking crowd
simulations and not to produce legible motion in multiagent scenarios. However, to the best of our
knowledge, our planner is the first framework designed to automatically produce legible motion
in multiagent settings of close interaction. In the absence of a directly relevant baseline, SF and
ORCA allow us to directly relate to the literature as they are commonly employed for benchmark-
ing algorithms in the areas of multirobot navigation and social navigation [21, 42, 46, 73, 77].

We empirically tuned the parameters for all algorithms to ensure a fair comparison. To tune the
parameters, we payed special attention at the emerging average clearance and speed. Note that for
different algorithms, the notion of preferred or maximum speed affects performance to different
degrees. We note the parameters here for completeness:

• SF: v0 = 1.5 m/s, σ = 0.5 m, Vab = 21 m2s−2, tau = 0.4 s, vmax = 2.5 m/s, UaB0 = 5 m,
R = 0.2 m, ϕ = 180◦, c = 1, Δt = 0.1 s.
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Fig. 6. Curve diagrams for braids of different complexity (top). The braid σ−1
1 σ2 depicted in (b) is more

complex (TC = 2) than the braid σ−1
1 (TC = 1.585) shown in (a). This is reflected in the increased number of

intersections between the curve diagram σ−1
1 σ2 · E and the x-axis (dotted line).

• ORCA: neighborDist = 3, maxNeighbors = 10, timeHorizon = 2 s, timeHorizonObst = 2
s, radius = 0.35 m, maxSpeed = 1 m/s.
• SM: We used an action set of 50 actions of fixed speed v = 1.2 m/s, λ = 0.11. The weight wi

was defined to be the inverse of the distance between the robot and agent i . We normalized
these weights across agents so that

∑n
i wi = 1. We also normalized the metrics of Equation

(5) to control their range of values.

4.3.3 Metrics. We consider two metrics, each targeting a different aspect of trajectory quality:
(a) the Topological Complexity index [19] and (b) the Path Irregularity index [30]. These metrics
complement each other, capturing respectively topological and geometric properties of multiagent
interaction that may drive human perceptions with respect to agents’ intentions.

Topological Complexity Index. In past work [52], we have showed that the motion of multiple
navigating agents can be abstracted into a topological braid [9] by projecting their trajectories
(represented as sequences of (x ,y, t ) tuples) onto a selected spatiotemporal plane and tracing any
crossings that emerge among them. The emerging object is a set of strings entangled with each
other in a way that reflects the way agents’ trajectories entangled over time as agents navigated
toward their destinations. The pattern that a braid describes can be simple when the strings do
not entangle significantly with each other or complex when they do. This can also be true for
the trajectories of agents—when agents mix with each other in close proximity, their trajectories
become more strongly entangled over time (see Figure 5). The Topological Complexity index, pro-
posed by Dynnikov and Wiest [19], quantifies the complexity of the entanglement of a topological
braid. In this work, we use it to quantify the complexity of the entanglement of agents’ trajectories
in a navigation domain: First, we map a set of agents’ trajectories onto a topological braid β by
projecting their trajectories onto the x-t plane1 and scaling them to the time window from t = 0
to t = 1 as described in our earlier work [52]. It might be helpful to think of this projection as the
the motion of a set of particles from time t = 0 to time t = 1 (Figure 6 depicts example braids).
Then, denote by D2 a closed disk surrounding the initial positions of the particles and by E a set of

1As long as we are consistent throughout experiments, the choice of projection plane does not make a difference [67].
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n − 1 disjoint arcs, anchored on the disk, that clearly separate the particles for time t = 0, defining
n distinct regions in the disk (see Figure 6). Assume that these regions are rigidly attached to the
particles. As the particles follow the motion described by the braid β from t = 0 to t = 1, the
regions dynamically deform.

A curve diagram of a braid is the image D = β · E of E corresponding to the regions obtained by
applying the motion described by β on E (see Figure 6). The norm of a curve diagram D is defined
as the number of intersections of D with the x-axis. The Topological Complexity (TC) index of
a braid β ∈ Bn is defined as

TC (β ) = log2 ( | |β · E | |) − log2 ( | |E | |). (6)

This expression is equivalent to the logarithm of the increase in the number of intersections be-
tween the x-axis and the arcs E upon the application of a braid β .

Intuitively, TC measures how much the motion corresponding to a braid twists or mixes the
regions around each initial point, describing (in our context) how much agents move past each
other. Figure 6 depicts the curve diagrams induced by applying motion described by two different
braids on the canonical curve diagram E. Figure 5(b) and Figure 5(c) illustrate examples of high
and low Topological Complexity, respectively. We see that high TC values describe scenarios in
which agents directly mix with each other as they navigate toward their destinations, whereas
low TC values describe scenarios in which agents avoid interacting with each other. Qualitatively,
we may observe that high-TC behaviors make it hard to predict agents’ passing sides—agents
navigate through the center of the workspace without showing inclination toward a collision-
avoiding passing side. In contrast, low-TC agents appear easier to infer—agents show early and
consistent inclination toward a passing side. These properties make TC relevant to studying the
Legibility of robot motion in multiagent scenarios. Section 5 investigates this connection using
data from human subjects.

Path Irregularity Index. The path irregularity index, proposed by Guzzi et al. [30], characterizes
the geometric inefficiency of agents’ trajectories. Specifically, Path Irregularity (PI) is computed
as the average amount of angular divergence between an agent’s heading and its direction to its
destination per unit path length, averaged per agent:

PI (Ξ) =
1

n

n∑

i

∑T
1 θ i

t

Li
, (7)

where Ξ = (ξ1, . . . , ξn ) is a tuple containing agents’ trajectories ξi , i ∈ N , θ i
t is the angle difference

between the velocity of agent i and the direction to its goal at time t , Li is the total length of the
path followed by agent i , andT is the total time of the experiment. Measured in rad/m, the higher
PI gets, the higher the geometric inefficiency of an execution. Figure 5(b) and Figure 5(c) illustrate
examples of low and high Path Irregularity.

4.3.4 Analysis. Figure 7(a) depicts the average Topological Complexity for each planner and
class of scenarios considered. The Topological Complexity of SF and ORCA appear to consistently
rise with the number of agents. In contrast, SM exhibits a slower rise: The transitions between
three and four agents and between five and six agents have almost constant complexity, with
the only rise taking place in the transition between three and four agents. Overall, SM achieves
consistently lower topological entanglement with statistical significance, except from the case of
three agents, where the scenarios are not geometrically challenging enough to yield significantly
diverse behaviors. Detailed statistics of paired t-tests conducted for the SM-SF and SM-ORCA pairs
are reported in Table 1.
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Fig. 7. Comparative evaluation of the selected simulation frameworks (SM, SF, and ORCA) over four different
classes of scenarios involving three, four, five, and six agents, respectively. Within each class, 200 randomly
selected scenarios are executed and evaluated with respect to Topological Complexity (a) (a theoretical lower-
bound baseline is included for reference) and Path Irregularity (b). Each point on the graph represents the
average value over all 200 experiments for the class.

Table 1. Statistics of Paired t-Tests between Policies for Different Agent Numbers

t-Tests Topological Complexity Path Irregularity

Num. of agents Pair t value p value t value p value

3
SM-SF −2.497 0.013 −26.397 <0.001
SM-ORCA −0.593 0.553 9.197 <0.001

4
SM-SF −7.963 <0.001 −34.514 <0.001
SM-ORCA −5.740 <0.001 17.336 <0.001

5
SM-SF −9.424 <0.001 −41.400 <0.001
SM-ORCA −5.395 <0.001 7.934 <0.001

6
SM-SF −11.561 <0.001 −51.430 <0.001
SM-ORCA −5.250 <0.001 0.152 0.879

For reference, we also include a lower bound on Topological Complexity corresponding to a
centralized planning baseline from our past work [52]. This baseline generates a path between
agents’ initial and final states involving the minimum number of swaps in the order of agents
along the x-axis (the same axis used to generate the braids used for the computation of TC along
all experiments). The lower bound value (TC = 1.5850) is an artifact of the selected scenarios
(traversal between antipodal locations) and corresponds to the ideal case in which agents reach
their destinations in a coordinated way that avoids trajectory entanglements (see Figure 5(c) for
an example). In practice, we see that all planners are suboptimal with respect to the lower bound
baseline, which reflects the price of no explicit communication across agents.

Figure 7(b) depicts the average Path Irregularity per agent, for each planner and class of scenar-
ios considered. Although for all planners the path irregularity rises with the number of agents, each
planner performs differently. The different performance of each planner is indicative of the distinct
philosophies with which they have been designed. SF, lacking predictive mechanisms, yields sig-
nificantly more irregular paths than SM and ORCA. ORCA achieves consistently the lowest path
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irregularity, as a result of its geometrically optimal behavior, which in practice results in minimal
divergence from the unobstructed line connecting an agent with its destination at any time. SM
performs slightly worse than ORCA, as a result of its consideration of collision avoidance as a ro-
tation; SM agents diverge from their shortest paths more often to convey intent. For the case of six
agents, the geometric complexity of the scenarios is too intense even for ORCA, which performs
almost equally to SM.

The findings from our simulation study suggest that SM produces generally less topologically
complex trajectories in multiagent scenarios than two other baselines from the area of multiagent
navigation.

5 SOCIAL MOMENTUM GENERATES LEGIBLE MOTION

In a multiagent domain, the actions of navigating agents contribute to the formation of inferences
on others. For instance, from the motion of agents in Figure 5(b), it is unclear—until later in time—
how they intend to avoid each other, as they all appear to be travelling through the center of the
workspace. In contrast, the motion of agents in Figure 5(c) demonstrates an emergent organization
that facilitates inference of how they intend to avoid collisions. These examples illustrate a possi-
ble connection between the notion of legibility in multiagent navigation and the measure of Topo-
logical Complexity. Here, following the discussion of Section 3.1.4, by legible, we refer to motion
that clearly conveys the robot’s intention over a passing side (i.e., right, or left). Qualitatively, from
Figure 5, we see that executions of low topological complexity seem to be more legible; conversely,
executions with high topological complexity appear to be less legible. Thus, given the findings of
Section 4, we expect the behaviors generated by SM to be more legible to human observers.

To evaluate the validity of this expectation, we formally investigate the following hypothesis
H1 by examining its constituent sub-hypotheses H1a and H1b:

H1: The SM framework generates multiagent navigation behaviors that human observers perceive as
legible.

• H1a: Social Momentum produces multiagent trajectories of comparatively low topological
complexity.
• H1b: Trajectories of low topological complexity are perceived as more legible by human

observers.

Section 4.3.4 has already demonstrated empirically that SM generates executions of low topological
complexity compared to two other baselines. Thus, H1a is confirmed. To contextualize and validate
this finding, we separately investigated sub-hypothesis H1b by conducting an online user study in
which we asked human subjects to predict the evolution of simulated multiagent scenarios from
partial observation.

5.1 Study Design

We designed an online user interface for a simple game around predicting agent motion. The
interface played videos of simulated multiagent navigation scenarios and asked the user to
predict which side a specific pair of agents would pass each other on (right or left) by clicking
on a button corresponding to each side (see Figure 8). The interface incentivized fast, accurate
responses through a scoring system that awarded points for accurate answers given early in the
video (before the agents passed each other) and deducted points for incorrect or slow responses.
Users were shown information about their performance relative to the median performance of
previous users to further motivate healthy competition toward giving correct answers as quickly
as possible. We employed a within-subjects design in which all users were shown the same set of
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Fig. 8. Study interface: A video of a simulated scenario (large teal circle at top) plays and users predict how
the red agent will avoid the blue agent (passing on its left or right) by pressing the corresponding button
at the bottom. The user’s score and relative performance statistics are displayed to motivate fast, accurate
responses.

15 videos, presented in random order. Each video showed a distinct simulated multiagent scenario.
All scenarios involved agents travelling between antipodal points on a circular workspace, incen-
tivizing agents to plan nontrivial collision avoidance maneuvers. The scenarios were selected to
span a broad range of Topological Complexity index values [19], ranging from 1.585 to 4.250, and
ranged in duration from 6.3 to 15.7 s.

5.2 Analysis

We recruited 180 unique users via open recruitment calls on the social media platforms Reddit
and Facebook without special selection criteria. Considering incomplete entries (entries in which
users did not watch all 15 videos), we recorded a total of 2,704 video views. For each view, we
recorded (a) the user’s prediction (right or left) and (b) the time of that prediction (relative to
the start of the corresponding video). We removed responses that were given either before the
start of a video or after the end of a video from the data, resulting in a dataset of 2,647 responses.
Figure 9(a) describes the distribution of prediction times across all videos, itemized with respect to
correctness, for this dataset. The timing values are normalized to total video duration to allow for
timing comparison between videos of different length. Overall, only 300 of 2,647 responses were
incorrect, but we found that correct responses required significantly more time (paired Student’s
t-test, t = 2.065,p = 0.039).

Figure 9(b) demonstrates the effect of topological complexity on the time participants take to
give a correct answer. We fit a linear model to the data using iteratively reweighted least squares,
shown in Figure 9(b) as a blue line with a 95% confidence interval. The effect of topological com-
plexity on the median time to correct answer is positive (slope 0.0236) and significant according
to a Student’s t-test (t = 5.60, p < 0.001). This finding suggests that as the topological complexity
of an execution increases, users take more time to accurately predict the side of passing. Per the
definition of legibility given in Section 3.1.3 and the original paper by Dragan and Srinivasa [17],
legibility requires human observers to be able to infer an agents’ intent (here, the agents’ passing
side) quickly and correctly. In this study, we see that correct predictions of the agents’ passing side
require more time(normalized to video length) for executions with higher topological complexity.
Thus, executions with high topological complexity are less legible, as they require more time to pre-
dict correctly. This finding confirms sub-hypothesis H1b, which, in conjunction with H1a confirm
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Fig. 9. Distribution of response times (left) and relation between topological complexity and normalized time
to correct answer (right). We see a statistically significant positive correlation, indicating that scenarios with
greater topological complexity require more time to accurately predict.

H1. Overall, this confirmation suggests that within the multiagent navigation setting of this study,
navigation behaviors generated by Social Momentum are perceived as more legible compared to
the considered set of baselines.

6 EXPERIMENTAL EVALUATION OF MOTION PRODUCED BY SOCIAL MOMENTUM
IN THE PRESENCE OF HUMANS

We conducted a lab study to understand the effects of the embodiment of our proposed navigation
framework on human behavior and human perception. A video excerpt from our study can be
found at this link: https://youtu.be/8aO4P6_OzW4.

6.1 Study Design

The lab environment afforded us with the ability to control human–robot interactions across space
and time. In particular, we employed a design that enabled us to

• Enforce a setting of implicit, nonverbal social engagement among agents, similar to the type
of interaction among walking pedestrians;
• Construct a moderately crowded scene that balanced close interactions with space for the

robot to showcase its distinct navigation strategies (see Figure 10(a));
• Promote the emergence of nontrivial interactions, involving challenging collision-avoidance

maneuvers between participants and the robot through the definition of rules;
• Motivate natural walking behaviors by not disclosing the real purpose of the study until the

debriefing process and by manipulating participants’ cognitive load through a background
scenario and task;
• Bound the total duration to facilitate recruiting and minimize potential effects resulting from

participants’ fatigue.

6.1.1 General Procedure. Our study is organized into a set of experiment sessions. In each ses-
sion, three different human subjects participate in a set of three experiment trials. Before the first
trial, participants are asked to give written consent to confirm their participation and optionally to
be video recorded. A member of our research team delivers the instructions and answers questions.
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Fig. 10. Illustration of the experiments conducted at our study sessions. Figure 10(a) shows footage from a
study session. The setup comprises a telepresence robot [1] and a set of six easels representing machines
in a fictional factory workspace. Three participants, wearing tracking helmets navigate between stations to
perform fictional maintenance tasks on the machines. Figure 10(b) illustrates the experimental process: once
a sound signal is broadcast, the humans and the robot start moving between different machines (shown in
blue color). As they move, the perform collision-avoidance maneuvers.

During each trial, participants repeatedly visit a set of stations inside a rectangular workspace of
area 16 m2 (see Figure 10(b)), driven by a fictional scenario (see Section 6.1.2). In parallel, a mo-
bile robot (a Suitable Technologies Beam Pro, equipped with a quad core i7 processor laptop from
2017), shown in Figure 10(a), also moves between the stations as part of the scenario. During each
trial, we track the human and robot trajectories using an overhead motion capture system of six
high-accuracy (<1 mm), high-fidelity (frequency 180 Hz) cameras and record the experiment if
participants gave consent. Real-time tracking is enabled through the use of construction helmets
(see Figure 10(a)) with reflective markers. After each trial, participants are asked to fill in a ques-
tionnaire, containing questions about their impressions from their interactions with the robot. At
the end, participants are asked to provide basic demographic data and information regarding their
prior experience with user studies and robotics technology. Participants are then debriefed, com-
pensated, and dismissed.

6.1.2 Background Scenario and Task. Participants are asked to imagine that they are workers in
a factory (the factory setting helps justify the tracking helmets) where the robot is a supervisor. The
factory environment (lab workspace) contains six machines, represented as easels, spread around
the workspace, as shown in Figure 10(b). Each worker is given a distinctly colored marker and a
contrasting, distinctly colored set of sticky notes. The duty of a worker is to perform maintenance
tasks to machines and assign tasks for other workers to perform. Assigning a task is done by
drawing a square on the pad of an easel, whereas performing a task is done by posting a sticky note
inside a square drawn on an easel pad. Participants are asked to perform only tasks represented
with squares of color that matches the color of their sticky notes (see Figure 10(a)).

6.1.3 Trial Description. Before the start of each trial, participants are randomly positioned
next to different machines, and the robot is placed in the middle of the workspace, as shown in
Figure 10(a). A trial is organized into a set of maintenance cycles, initiated by a gong sound, played
by the robot. Each time the gong is played, participants are instructed to leave their machines to-
ward a non-adjacent machine of their choosing that is not occupied by another participant. Each
time participants reach a new machine, they are instructed to perform up to one pre-assigned task
(if one exists) and assign a new task. At the same time, the robot is navigating in the workspace by
following the same rules of transitioning between stations, i.e., it only moves to a randomly picked,
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non-adjacent machine when the gong sound is played (note that it is possible that the robot might
pick a machine occupied by a human). For synchronization purposes, the gong sound is played
when the robot is ready to move toward its next machine. Each trial lasts exactly three minutes,
during which an ambient factory sound track is played.

6.1.4 Conditions. All participants were exposed to the same three conditions (within-subjects
design), each corresponding to a different navigation strategy, executed by the robot. To account
for potential ordering effects (i.e., due to fatigue, frustration, learning), the condition order was
methodically varied and approximately equally spread across all sessions. We compared the per-
formance of SM with ORCA [76] and teleoperation (TE). These strategies were mainly selected
due to the diversity of decision-making principles that they represent. SM represents an intention-
aware motion planning paradigm, whereas ORCA (called OR for brevity from now on) is designed
to be efficient, and TE is designed to be easy for an operator to use and to appear humanlike.
Additional influences on our selection of navigation strategies included (1) the fact that OR con-
stitutes a common benchmark and work of reference for multiagent simulations (e.g., References
[14, 27, 42, 53]); (2) the existence of an open source, optimized C++ implementation of OR; and
(3) the widespread use of telepresence robot platforms through teleoperation via their navigation
interfaces. The complexity of a real-world pedestrian environment would pose a significant chal-
lenge to any of these navigation planners. However, we believe that an extensive and comparative
evaluation of planners with distinct philosophies could provide us with significant insights and
experience for the design of the next generation of social navigation planning algorithms.

6.1.5 Implementation of Teleoperation. The teleoperation strategy (TE) was implemented
through the official navigation interface provided by the manufacturer [1], using the arrow keys
on a standard laptop keyboard. This interface contains two live streams of video, providing the
teleoperator with real-time video streams of a forward, wide-angle field of view (top) and a floor
view (bottom). Navigation commands may be issued via the laptop keyboard’s arrow keys or with a
mouse. Commands are demonstrated as projected future trajectories on the video streams, provid-
ing visual feedback to the operator (but not to the study participants). The teleoperation condition
was executed by the same member of our research team across all sessions, from a remote location
(outside of the lab). The teleoperator had significant prior experience with the navigation interface.
Before collecting data for our final dataset, we completed a total of seven rounds of pilot sessions
under different variants of the final study setup. Thus, by the time we officially started the study,
the teleoperator had reached a skill level that qualitatively appeared to be appropriate for the needs
of the condition. Although it is hard to precisely quantify the operator’s skill level, his experience
was on the order of several hours of operation prior to the start of the study, and thus we do not
believe that his performance evolved over the course of the study as a result of learning.

6.2 Hypotheses

Upon experimenting with the three navigation strategies considered (simulations conducted with
SM and OR, and personal teleoperated teleconference sessions with the Beam), we observed
very different patterns of decision making. We interpreted these patterns as the result of the
different design principles and objectives underlying the operation of each framework: OR was
developed to produce efficient, realistic simulations of virtual multiagent scenarios; SM was
designed to generate legible robot motion in dynamic multiagent environments; TE was based
on a navigation interface [1], specifically designed to allow non-expert users to control a robot
intuitively. To the best of our knowledge, these strategies have never been tested against each
other under challenging, multiagent, experimental settings. It was unclear how close interaction
between the robot and different human participants would affect the motion generated by the
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different strategies. Furthermore, it was uncertain how humans would react to different behaviors
exhibited by the robot and how this interaction would affect overall performance for both humans
and the robot. Using the dataset generated by our study, we explore these questions by examining
the validity of the following hypotheses:

H2 - Robot Performance: In close interactions with humans:

• H2a: OR generates the most geometrically efficient paths. This is motivated by the docu-
mented efficiency of ORCA [76] compared to other baselines in multiagent simulation.
• H2b: SM generates high-acceleration paths. This is motivated by the tendency of SM to

produce suboptimal, exaggerated motion in an effort to convey intent over a passing side.
• H2c: TE generates the most energy-efficient paths. This is motivated by the superior long-

term planning capabilities of humans and by the robot teleoperation interface that enables
comfortable and efficient navigation.

H3 - Human performance: Humans navigating in close proximity with the robot:

• H3a: follow the lowest-acceleration paths when the robot runs SM. Our insight is that by
being legible, SM could enable humans to anticipate its motion more accurately. This would
mean that participants would have to adjust their speed levels fewer times, thus following
lower-acceleration paths.
• H3b: spend the least energy when the robot runs TE. Our insight is that a human-operated

robot could exhibit behaviors with anthropomorphic traits that could be observable by par-
ticipants. This could enable them to understand and trust the robot behaviors more than the
baselines, which we would expect to see reflected in the robot’s lower energy.
• H3c: spend the most energy when the robot runs OR. Our insight is that by striving for

efficiency, a robot running ORCA would end up expecting humans to spend more effort into
avoiding collisions with it.

H4 - Group performance: Global group (human and robot) behavior under SM: results in tra-
jectories of lower Topological Complexity than the other two conditions. This is motivated by the
finding of the online study suggesting that SM generates motion of lower TC than its baselines.

6.3 Datasets

We conducted 35 experiment sessions, in which a total of 105 human subjects were exposed to
all three conditions. Subjects were recruited from a university population (Cornell University),
through a centralized, university-run subject-recruitment website as well as through fliers posted
across campus. The subjects (59 female, 45 male, 1 unidentified) were 21.45 years old on average
(SD = 3.19 years) with their age ranging from 18 to 33 years. About half of them (57) had prior
experience of user study participation and they rated their familiarity with robotics technology
with an average of 2.47 (SD = 1.27) on a 5-point Likert scale.

We collected a dataset comprising the trajectories of all 105 participants and the robot across
all trials. Focusing on dynamic interactions of close proximity, we split this raw dataset into two
datasets of trajectory segments: (a) a dataset comprising 1,033 robot trajectory segments of close
interaction with humans (minimum distance d < 1 m) and (b) a dataset comprising 1,566 human
trajectory segments of close interaction with the robot (also, of minimum distance d < 1 m). We
also collected a dataset comprising the responses of all 105 participants to a questionnaire, contain-
ing Likert-scale style questions, based on the instrument of Bartneck et al. [5] and short response
questions.
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Fig. 11. Expected means and confidence intervals for robot trajectory acceleration (a), robot trajectory energy
(b), robot path irregularity (c), and robot time (d), averaged per trajectory segment. Quantities labeled with
different letters (A, B, C) come from significantly different distributions (Tukey’s HSD test, p < 0.05).

Table 2. Effect of Navigation Strategy on Robot Behavior

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
a 56.09 28.05 2 65.12 58.94 <0.0001
E 0.7083 0.3541 2 1015 440.1 <0.0001
E 0.05796 0.02898 2 999.1 4.825 0.008213
PI 454.4 227.2 2 1012 355.3 <0.0001
τ 116.5 58.27 2 1016 1056 <0.0001

6.4 Trajectory Analysis

We analyze the trajectory dataset using a set of trajectory quality measures from relevant literature
[30, 42, 53], computed over fixed timestep intervals (100 timesteps, totaling 0.2 s). In particular, we
computed (1) the average Acceleration per segment, a; (2) the average Energy per segment, E, where
energy is defined as the integral of the squared velocity of an agent throughout its trajectory; (3)
the minimum Distance between the robot and any humans per segment, d ; (4) PI , measuring the
total amount of unnecessary rotation (angle between an agent’s heading and direction to goal)
that an agent exhibits per unit path length [30]; (5) Path Efficiency, E , defined as the ratio of the
distance between the endpoints of a segment over the length of the path that the agent actually
followed; (6) time spent per unit path length over a segment, τ ; and (7) TC [19, 53], defined as
the amount of entanglement among agents’ trajectories throughout a trial (the Braidlab software
package [68] was used for these computations).

6.5 Effect of Navigation Strategy on Robot Behavior

We model the effect of condition (OR, SM, and TE) on each one of the trajectory quality mea-
sures considered. We use linear mixed-effects regression models to account for both fixed effects
resulting from the conditions but also for random effects resulting from the session and the trial
(expected means with confidence intervals are depicted in Figure 11).

One-way ANOVA performed on the models demonstrates a significant effect of the condition
on all robot trajectory quality criteria at the p < 0.05 level (see Table 2 for the test statistics and
Figure 11 for the expected means and confidence intervals for all criteria), and thus we find that H2
is confirmed. More specifically, it can be observed that OR generates the smoothest motion among
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Table 3. Effect of Navigation Strategy on Human Behavior

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
a 1.415 0.7073 2 250.4 3.888 0.02173
d 0.1075 0.05377 2 231.5 0.5872 0.5567
E 0.112 0.05599 2 253.3 3.449 0.03326
E 0.02977 0.01489 2 68.46 1.959 0.1488
PI 0.5394 0.2697 2 249.4 3.286 0.03904
τ 0.08277 0.04139 2 252.7 2.145 0.1192

Fig. 12. Expected means and confidence intervals for human acceleration (a), human energy (b), and human
path irregularity (c), averaged per trajectory segment. Figure 12(d) depicts the mean and confidence interval
for the topological complexity, averaged across trials considering both the humans and the robot. Pairs la-
beled with different letters (e.g., A and B) are significantly different to each other (Tukey’s HSD test,p < 0.05).

all strategies (lowest acceleration, lowest path irregularity, lowest time), which confirms H2a. This
trend was expected as OR selects actions that minimize divergence from an agent’s direction to
goal and desired speed to ensure collision avoidance for a desired time window. This results in a
smoother speed profile than other conditions. SM, however, prioritizes intent-expressiveness by
exaggerating its motion to indicate an intended passing-side intention; this results in higher accel-
eration (due to rotation) and path irregularity, which confirms H2b. Finally, TE is the most energy
efficient—which confirms H2c—but also the least time efficient of all strategies. These findings
could mainly be attributed to the defensive driving style of the teleoperator and the navigation
through arrow keys.

6.6 Effect of Navigation Strategy on Human Behavior

Similarly to robot trajectory, we model the dependency of the human trajectory quality measures
to the condition with linear mixed-effects models, accounting also for random effects of session,
trial, and helmet per trial. Figure 12 depicts the expected means and confidence intervals for the
human trajectory quality measures, whereas Table 3 contains statistics extracted upon performing
ANOVA on the models at the p < 0.05 significance level.

Overall, we find that H3 is confirmed. In particular, we see that humans in close proximity
with the robot followed smoother trajectories of lower acceleration and path irregularity when
exposed to SM than humans exposed to either OR or TE, which confirms H3a. This was in line
with our expectations: SM’s intention-aware navigation strategy adapts the robot’s behavior to
the preferences of humans, thus facilitating human inference and decision making. Further, it
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Table 4. Effect of Navigation Strategy on Group Behavior

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
TC 107.3 53.66 2 67.71 8.075 0.000716

was observed that humans spend the least energy when exposed to TE, which confirms H3b. We
attribute this finding to the perceived humanlike nature of the motion generated by a teleoper-
ated robot: The embodiment of human decision making on a robot platform features humanlike
traits that potentially enable a higher level of human comfort. Finally, humans spend the most
energy around OR, which confirms H3c. This could be perceived as an result of OR’s more pre-
dictable motion (minimal divergence from desired direction). Higher predictability potentially re-
sults in higher confidence for participants, which allows them to move faster and thus spend more
energy.

6.7 Effect of Navigation Strategy on Group Behavior

We compute the TC of the complete motion of all agents (robot and humans) throughout each trial.
We model the effect of condition on the TC of the group trajectory (the set of all agents’ trajectories)
over a trial, using a linear mixed-effects model (accounting for random effects of session, trial, and
helmet per trial). Overall, we find that H4 is rejected. ANOVA performed on the model uncovered
a significant variance among conditions (F (2, 67.71) = 8.075,p = 0.000716, see Table 4, Figure 12).
While we see that the TC of SM is lower than the TC of OR, the result is not statistically significant.
Further, we see that the TC of trajectories generated by groups exposed to TE was significantly
lower than both SM and OR.

While the lab experiment resembles in many ways the experiment featured in the online study,
several variables introduce important differences. Importantly, the embodiment on a differentially
constrained robot results in robot motion that differs from the motion generated in the simulated
experiments. Further, the online study only compared SM against simulation baselines (ORCA
and SF). We see that SM still exhibits lower TC on average than OR, albeit not to a statistically
significant extent. The relation to a human-operated robot was a new baseline for which we had
less clarity, especially under the embodiment settings considered. Finally, this finding could be at-
tributed to the mechanisms underlying human navigation, as the decision-making computations
under TE were done by the human teleoperator. Lower TC represents trajectory entanglement
that intuitively corresponds to behaviors of passing around as opposed to passing through oth-
ers (see Figure 5). Thus, this trend could be attributed to the tendency of the human teleopera-
tor to avoid collisions more globally, by avoiding any type of encounter with other participants,
whereas the robot was employing a more local collision avoidance mechanism by sequentially
responding to any challenging encounters. This finding is perhaps unsurprising since both au-
tonomous algorithms considered explicitly favor the avoidance of closer collisions over further
ones.

7 HUMAN PERCEPTIONS OF SOCIAL ROBOT NAVIGATION BEHAVIORS

In this section, we investigate how the social robot navigation frameworks considered in our lab
study shaped human perceptions. We focus on the dataset of human responses to the questionnaire
distributed after each condition. We first analyze the responses to a Likert-scale questionnaire,
which focused on participants’ impressions about the robot’s intelligence, social competence, and
emotional impact. We then perform a thematic analysis on participants’ responses to an open-form
question that extracted qualitative feedback from participants.
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Table 5. Ratings of Robot Behavior and Human State

Ratings posed as adjective pairs and sentences Mean SD
Incompetent Competent 3.16 1.02
Irresponsible Responsible 3.22 1.02
Unpredictable Predictable 2.64 1.11
Incompliant Compliant 3.14 0.95
Foolish Sensible 3.09 1.06
Unfriendly Friendly 3.13 1.02
Unsafe Safe 3.27 1.22
Unpleasant Pleasant 3.09 0.96
Rude Polite 3.02 0.92
Clumsy Coordinated 3.26 1.09
Unintelligent Intelligent 3.12 0.98
Untrustworthy Trustworthy 3.15 0.87
Socially unaware Socially aware 2.61 1.15
Indiscreet Discreet 2.67 1.10
Anxious Relaxed 3.28 1.13
Agitated Calm 3.39 1.11
Surprised Tranquil 3.17 0.99
The robot’s presence was not noticeable 2.04 1.11
I will be able to tell where the robot is going in the future 2.25 1.12
The robot will not bump into me in the future 2.97 1.24

7.1 Exploratory Factor Analysis: Effect of Navigation Strategy on Human Ratings

Table 5 contains descriptive statistics of the contributed ratings. The left column lists the adjective
pairs and questions shown to participants in a 1–5 Likert-scale format, where 5 corresponds to
a positive answer. Ratings from 3 subjects were omitted as they were incomplete, resulting in an
effective dataset of 102 human subject ratings for each condition. The right column lists the means
and standard deviations of the ratings from all 102 subjects, computed over all three conditions.

To understand the ratings better, we perform an exploratory factor analysis to group them into
thematically consistent categories. Factor analysis expresses an observation X ∈ Rp , where p is
the number of observed variables, as a linear relationship,

X = ΛF + E, (8)

where Λ is a matrix of factor loadings, F ∈ Rm is a factor space of size m ≤ p, and E is a vector of
specific factors. The factor loadings in Λ represent correlations between observed variables X and
latent factors F .

In our case, we had p = 20 questions, answered 306 times (3 times from each of the 102 subjects).
We verified the sampling adequacy by computing the Kaiser-Meyer-Olkin measure (KMO) for each
question independently (KMO > 0.74), and for all questions together (KMO = 0.89). We verified
that the observed variables were not pathologically correlated by examining the correlation matrix
R (Bartlett’s test, χ 2 (190) = 2787.774, p < 0.001, det (R) > 0.00001). Following Kaiser’s criterion,
we decided to extract m = 5 principal factors corresponding to eigenvalues >1. Based on these
5 factors, we were able to explain 53.3% of the total variance. Table 6 depicts the retrieved factor
matrix Λ, rotated by the Varimax method. The factors are ranked in order of decreasing variability
explained.
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Table 6. Factor Matrix (Varimax Rotated)

Rating Factor I Factor V Factor II Factor III Factor IV Communality
incompetent_competent 0.423 0.481 0.048 0.496 0.127 0.673
irresponsible_responsible 0.496 0.380 0.061 0.479 0.144 0.643
unpredictable_predictable 0.027 0.114 0.162 0.599 0.055 0.401
incompliant_compliant 0.413 0.304 0.098 0.413 0.135 0.461
foolish_sensible 0.426 0.529 0.016 0.284 0.074 0.547
unfriendly_friendly 0.698 0.133 0.253 −0.022 0.096 0.578
unsafe_safe 0.584 0.225 0.324 0.179 0.217 0.576
unpleasant_pleasant 0.664 0.284 0.260 0.043 0.159 0.615
clumsy_coordinated 0.216 0.549 0.125 0.170 0.200 0.432
unintelligent_intelligent 0.167 0.845 0.007 0.140 −0.083 0.767
untrustworthy_trustworthy 0.463 0.462 0.167 0.175 0.019 0.487
sociallyUnaware_aware 0.219 0.586 0.190 0.178 0.220 0.506
anxious_relaxed 0.229 0.020 0.771 0.149 0.093 0.677
agitated_calm 0.287 0.211 0.789 0.186 0.111 0.796
predict_where_future −0.078 0.148 0.190 0.602 −0.038 0.427
rude_polite 0.547 0.229 0.133 −0.076 0.161 0.401
indiscreet_discreet 0.216 0.022 0.088 0.119 0.464 0.284
surprised_tranquil 0.149 0.068 0.570 0.218 0.252 0.462
presence_not_noticeable 0.052 0.114 0.157 −0.051 0.735 0.582
wont_bump_future 0.231 0.335 0.271 0.052 0.327 0.348
SS loadings 2.947 2.729 2.060 1.721 1.215
Proportion Variance 0.147 0.136 0.103 0.086 0.060
Cumulative Variance 0.147 0.283 0.386 0.472 0.533
Proportion Explained 0.276 0.255 0.193 0.161 0.113
Cumulative Proportion 0.276 0.531 0.724 0.886 1.000

We interpret the factors by focusing on the questions with loadings greater than 0.5 in Table 6.
Based on this assumption, we extract the following labels. In particular, we label factor I as social
competence, since “friendly,” “safe,” “pleasant,” and “polite” scored high; factor V as intelligence,
since the “intelligent,” “coordinated,” “socially aware,” and “sensible” adjectives scored the highest;
factor II as human comfort, since the “relaxed,” “calm,” and “tranquil” adjectives scored highest;
factor III as predictability, since the “predictable” and “predict where the robot is going” scored
highest; and factor IV as discretion, since the “presence not noticeable” question scored highest.

Based on the extracted linear model of Equation (8), we can now compute the factor scores for
each observation following a standard regression method. We then model the effect of condition on
each of the extracted factors using a Linear Mixed Effects Regression Model. Table 7 contains the
statistics of one-way ANOVA tests performed for each factor. Overall, we observe no significant
variance across conditions for all factors.

7.2 Thematic Analysis: Effect of Navigation Strategy on Short Responses

To gain a deeper understanding of the impressions, attitudes, and views of the participants over the
three conditions of robot navigation strategies employed in the lab study (ORCA, SM, TE; see Sec-
tion 6), participants were invited to answer one open-question after experiencing each condition:
“Please include anything else you would like to share about your experience.” This question was asked
to extract users’ insights that cannot be captured using traditional Likert-scale questionnaires [2].
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Table 7. Effect of Strategy on Factor Scores (ANOVA)

Rating Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
Social competence 0.70078 0.35039 2 269.33 0.6025 0.5482
Intelligence 3.4518 1.7259 2 269.32 2.8332 0.06058
Human comfort 1.4287 0.71433 2 269.16 1.0388 0.3553
Predictability 0.083392 0.041696 2 270.57 0.0655 0.9367
Discretion 2.6502 1.3251 2 269.57 2.2132 0.1113

In this section, we detail the thematic analysis conducted, the coding scheme used, the inter-
judges agreement, and the results from this qualitative analysis. This thematic analysis helped us
understand the participants’ experience during the study.

7.2.1 Inter-Coder Agreement. Two independent coders were involved in the coding of the data.
First, each coder reads through the transcribed data independently and without attempting to make
a correspondence between the data and the conditions. At this stage, the two coders extracted
emerging themes from the data. Second, the coders discussed the themes they had identified and
established a preliminary coding scheme. With this initial coding scheme, the two coders coded
50% of the data. The inter-coder agreement for this 50% of data analysis ranged from .276 (minimal
agreement) to 1 (perfect agreement). Given the need to improve the coding, the coders discussed
all the disagreements and coded the remaining of the data. The inter-coder agreement for 100% of
the data showed a moderate to strong agreement, k = .739 to .807 [55].

7.2.2 Coding Scheme. Qualitative analysis of the data were performed with Nvivo version 12
[6]. From a total poll of 121 participant responses, we analysed 101 (SM = 33; ORCA = 31; TE = 38).
To provide focus to this qualitative analysis, we excluded 20 responses that were not related with
participants’ impression of the robot. The coding scheme used for the thematic analysis emerged
from preliminary analysis of the data and is composed of four main themes named “Navigation,”
“Robot Behavior,” “Appearance and Hardware,” and “Human Emotions.” The coding scheme is vi-
sually represented in Figure 13 and detailed in Table 8.

7.2.3 Results. We highlight some of the most relevant findings from our thematic analysis,
adding more depth as to how participants experience their interaction with the robot across the
three study conditions. Figure 14 depicts a word cloud containing the most frequent words used
by participants.

Navigation Intention and Proximity. There were common aspects between all study conditions
regarding how participants experienced the robot navigation that are related to the intention of the
robot and the proximity to the robot while navigating in the same space. Often, participants were
unclear about the purpose of the robot, “I had no idea what the robot was doing” (TE condition) as
the behavior of the robot was perceived as unpredictable to them, “It seemed like the robot would
adjust its speed but unpredictably which made me nervous” (OR condition).

Independently of the study conditions, there was an overall sense that the robot was too close
to the participants: “There were moments when the robot approached me so close that I felt uncom-
fortable” (SM condition) or “I felt the robot was in my personal space” (OR condition). In the same
line, participants also felt the robot was interrupting their trajectories, “The robot gets in the way
occasionally, sometimes I turn around and its right behind me” (OR condition). This resulted in some
collisions between the participants and the autonomous robot across study conditions, “I saw some
near collisions. I think the robot got in my way maybe once or twice” (SM condition). Interestingly,
participants acknowledged the collision experience with the robot in a similar fashion compared
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Fig. 13. Coding scheme developed and used in the thematic analysis described in Section 7.2.

Table 8. Coding Scheme Used in the Thematic Analysis

Navigation

Intention
Unclear purpose of the robot Confusion about the robot’s purpose.
Unpredictable behavior Impossibility to anticipate the robot’s behavior.

Proximity
Collision Reference to an actual collision or a near-collision experience.
Too close The robot approached too close, yielding discomfort.
In the way The robot intersected the path.

Behavior of the robot

Agency
Trust The robot’s behavior promoted trust in it.
Aggressiveness The robot’s behavior was perceived as aggressive.
Socially aware The robot’s navigation motion was perceived to respect the norms

of socially acceptable behavior.

Performance
Fostering performance The robot’s behavior fostered the task performance.
Hindering performance The robot’s behavior hindered the task performance.

Presence
Blending in The robot’s behavior felt natural and fit well within the context.
Disconnected presence The robot’s behavior did not fit within the context of the task.
Uncomfortable presence The robot’s presence brought up feeling of discomfort.

Appearance and
hardware

Likeable appearance Positive expressions toward the robot’s physical appearance.
Dislikeable appearance Negative expressions toward the robot’s physical appearance.
Limited perception The robot is perceived to lack sensing abilities over the environ-

ment and the participants.

Human emotions
Positive emotions The interaction with the robot resulted in positive emotions.
Negative emotions The interaction with the robot resulted in negative emotions.

to collisions with other participants from the study, “The robot felt about as in the way as a human
colleague during most of the study” (TE condition).

Although the navigation near the robot and the other participants elicited some near-collisions
and invasions of personal space, this may partially be due to the experiment design itself, which
attempted to emulate crowded navigation settings. Participants compared the study navigation
experience to walking in a crowed public space, “The robot did bump my shoe but it was very slight
and not very different from navigating around a crowd” (TE condition). Participants acknowledged
that the robot was blending in during the study, “I barely noticed the robot when I was performing
the tasks” (SM condition), comparing the presence of the robot with the other human participants,
“I did not notice the robots movements much more than the movements of other people” (OR
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Fig. 14. Word cloud. This image shows the most frequent words used by the participants to describe their
experience interacting with the robot across the three study conditions.

condition). These results capture similarities of the participants’ experience across the three study
conditions.

Robot Performance and Human Emotions. The factory setting scenario enabled us to avoid telling
participants about the true purpose of our study in an effort to elicit more natural navigation be-
haviors from them. The scenario involved participants performing maintenance tasks in a factory.
This led to considerations of performance that appeared frequently in their qualitative responses.
It is important to note that while participants referred to their performance, this study did not
focused on measuring the performance of the participants but rather on their subjective feelings
of working closely with a robot, which we report below.

Some reported the robot hindering their performance, “The robot’s movements relatively came in
the way of my work” (OR condition), “The robot hindered my performance” (SM condition). Interest-
ingly, on the TE condition, participants reported feelings of fostered performance related to robot
navigation, “I was more focused on the task this time. It was interesting having it move around and
feeling its presence watching/supervising us during the task” (TE condition). When interacting with
the robot in the TE condition, participants also reported a higher social awareness of the robot,
“The robot sensed my presence and stopped.” (TE condition) or, “I think it was interesting to see the
robot stop abruptly when another “worker” walked in front of it. I think sometimes it might be tough
to always have to worry about not bumping into the robot but it was nice to see that it at least had
some sense to stop” (TE condition).
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Although participants did not report feelings of fostering performance in the remaining con-
ditions, crucially, they associated positive feelings on the interaction with the robot, “The robot
seemed to be checking easels the were not currently occupied and staying away from people. This
made the robot seem like it was better at its job and safer because it didn’t try to get too close to people.
When transitioning the robot seemed to wait for the people to move so it was easy to walk around” (SM
condition). Positive emotions toward the robot arose mostly associated with the notion that the
robot is socially aware, “Sometimes the robot would be blocking my field of view of other machines,
but it was pretty aware in the fact that it would stop before hitting into other people” (SM condition)
or that it is not directly interfering with the task, “I did not feel as if the robot was interfering with
anything” (OR condition). Participants also acknowledged that the novelty of interacting with a
robot influenced how they performed during the task, “The initial presence of the robot was dis-
concerting, but as I focused on my own task, I stopped noticing it altogether” (OR condition). As the
novelty wears off, participants can focus more on the task, “I think I got used to the robot’s presence
by now, and hence it was better. Even though this felt more time constrained, the robot didn’t make
me as agitated” (SM condition).

8 DISCUSSION

This article represents a holistic documentation of our research on the design and evaluation of
the Social Momentum planning framework. In this section, we offer a unifying summary and dis-
cussion of our algorithmic design, empirical methods, and findings.

8.1 Algorithmic Design

Our algorithmic design was inspired by research on the cognitive mechanisms underlying human
inference [4, 16, 79] and by studies on the mechanisms governing human navigation and social
interactions in public spaces [28, 31, 80]. It was further motivated by recent work in human–robot
interaction [17, 40], highlighting the value of implicit, nonverbal communication as an effective
tool for fluent and effective human–robot collaboration. Finally, it builds on recent studies show-
ing the value of leveraging the cooperative mechanisms of human navigation into the design of
algorithmic social robot navigation frameworks [42, 52, 72].

In contrast to the majority of the literature, which implicitly captures features of interaction in
multiagent navigation [14, 37, 42, 72], our framework leverages an explicit representation of inter-
action based on the quantity of angular momentum. Our framework monitors the state of consen-
sus between the navigation strategy of the robot and the inferred strategies of other humans, and
contributes robot motion aiming at maximally communicating the robot’s intention of complying
with them while taking the robot closer to its destination. This is implemented via a computa-
tionally efficient decision-making rule based on the objective of Social Momentum, which offers
model interpretability and compactness. Finally, our framework is unique in that it represents one
of the first efforts of generating legible motion in the presence of groups of multiple human agents.
Legibility is a property of robot motion that has been typically explored in single-human/single-
robot interaction settings in structured domains [12, 17, 43] or in simulated scenarios in multiagent
navigation [48, 50, 52].

Our algorithmic design is deliberately simplified. One could possibly achieve higher perfor-
mance by considering an MPC-like design involving, e.g., a larger planning horizon, adding com-
ponents to the objective function, carefully crafting the action space or leveraging a data-driven
human motion prediction model. However, our intention was to produce a planning framework
rather than a specifically engineered solution. Despite its simplicity, our framework was capable of
handling the complex interactions arising in our lab experiments. This was achieved with minimal
tuning. We find this observation interesting on its own—one would expect that such a simplified
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design cannot handle humans. But we did show that from the perspective of participants, SM did
just as well in terms of self-reported human perceptions and allowed participants to navigate at
more constant speed levels (H3a). We hope that the community can easily build on top of our
framework or extract concepts and ideas such as employing topological models of multiagent in-
teraction.

8.2 Empirical Methods

Our work featured a comprehensive evaluation including a characterization of simulated algorithm
performance and a collection of human perceptions to simulated and embodied robot motion.

Critically, while there has been much work in the space of social robot navigation in multia-
gent human environments [14, 37, 42, 60, 72], our lab study is unique in that it—to the best of
our knowledge—is the first to combine the following important elements: (1) controlled experi-
mental settings, (2) crowded navigation settings, (3) challenging navigation encounters requiring
nontrivial collision-avoidance maneuvers, (4) natural walking-behaviors settings through the use
of a scripted scenario, and (5) large-scale data collection (105 subjects; 315 minutes of interaction).
These settings enabled us to enforce a situation resembling real-world interactions in a controlled
experimental fashion (Section 6.1). We hope that our lab study design could serve as a template
for designing a benchmark for evaluating social robot navigation algorithms.

Furthermore, our work establishes the value of topological tools and analysis for multiagent nav-
igation. First, the abstraction of angular momentum encodes a topological structure to the decision-
making process of the robot. Further, we proposed the use of Topological Complexity [19] as a tool
for the analysis of multiagent navigation behaviors. Our online user study showed evidence that
topological complexity affects human perceptions of multiagent interactions. In particular, we es-
tablished a correlation between high Topological Complexity and low Legibility of multiagent in-
teractions. We expect that Topological Complexity but also additional tools from topological data
analysis [20] may also prove very relevant to applications in multiagent navigation.

8.3 Insights on Legibility

Social Momentum was designed to generate robot motion intended to be perceived as legible by hu-
mans. We showed that in multiagent navigation, high Legibility is correlated with low Topological
Complexity, and we established that Social Momentum appears to be more legible compared to base-
lines such as ORCA [76] and Social Force [32] according to the findings of our online user study. In
the lab study, this clear result does not directly transfer; group behaviors (including the robot and
humans) under the SM condition exhibit lower average topological complexity than ORCA but
the trend is not significant (see Figure 12(d)). However, we observe that under TE, group behaviors
are significantly less topologically complex. Intuitively, low topological complexity corresponds
to multiagent-navigation behaviors featuring low mixing in the sense described in Figure 5. Thus,
it appears that in the presence of a human-teleoperated robot, the group of all agents engaged
in collision-avoidance encounters that were less direct, more coordinated, and—under the corre-
lation between high Legibility and low Topological Complexity—also more legible. In other words,
the human-teleoperated robot exhibited behaviors that were more easily interpretable by humans
(i.e., legible) than the behaviors generated by either ORCA or SM.

We interpret this observation as an artifact in part of the uniquely collaborative character of
human navigation [80]: The human operator (the operator was already experienced with the tele-
operation setup and was held constant across all trials) would anticipate human reactions to the
robot motion and visibly diverge from a straight line path to convey collision avoidance avoid
others. This pattern is also reflected in the higher time per path segment that the robot followed
under TE (see Figure 11(d)).
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8.4 Insights on Comfort

It is generally challenging to measure the actual levels of comfort of participants throughout the lab
study. The novelty effect, the close interaction settings and the traits of the algorithms considered
have significantly affected human impressions as it can be seen in the Likert-scale questionnaire
analysis (Section 7.1) but also in the thematic analysis of participants’ short responses (Section 7.2).
However, looking at the trajectory dataset, we observe that human subjects navigating in close
proximity to the robot under SM follow low-acceleration paths (significantly lower than under TE;
lower than ORCA but not significantly so). This implies that humans switched between different
speeds less times when navigating next to the robot running SM, compared to the baselines. The
lower frequency of speed switching seems to indicate that humans avoided collisions with the
robot more easily under SM, which we interpret as a proxy for higher comfort. While this is not
confirmed by human responses to the questionnaires, we believe that this might be because the
difference is not perceptible by human subjects.

8.5 Insights on Subjects’ Impressions

The analysis of human impressions that were collected via Likert-scale questionnaires did not
reveal significant differences across conditions. The thematic analysis on participants’ short re-
sponses to open-form questions shared this trend but did provide a more nuanced, in-depth insight
into participants’ thoughts and emotions during close interaction with the robot.

Generally, participants described the feeling that the robot was approaching them too closely in
all study conditions. They also recognized that this level of proximity was similar to how they felt
with other participants involved in the study, and in they way they feel in crowded spaces. This
seems to show that our intention to mimic a crowded space in which a robot and humans need
to navigate close to each other was successfully accomplished in the study design. Additionally,
it showed that the level of proximity the participants felt between them and with the robot was
equivalent. This seems to show that although they would have enjoyed an additional level of
comfort by having more space between them and the robot, they understood this closeness was
part of the task itself and could be compared to real-world scenarios of crowded environments.

Participants also reported positive emotions from the interaction with the robot, which emerged
mostly associated with perceiving a higher social awareness of the robot toward them. It is inter-
esting that this was achieved despite the very limited fashion in which the robot perceived the
world around it: just human poses without any other visual/force sensing. Thus, it appears that
a robot with solely kinematic sensing may be perceived as being capable of generating socially
adequate behavior in crowded navigation settings.

8.6 Future Directions

One of our goals is to move our robot outside of the lab. We conduct a field study to investigate if
the findings of the lab study transfer to real-world scenarios where humans and robots navigate in
crowded environments. Environments such as airports, shopping malls, and crowded streets are
of potential interest. This would require several systems upgrades including on-board perception
mechanisms and further tuning to adapt to the different context.

Crucially, while conducting the research discussed in this article, it became apparent that the
field of social robot navigation lacks solid evaluation standards. To the best of our knowledge
there are no validated scales or measures specific to robot navigation in close proximity to humans.
This makes it hard to evaluate how well algorithms perform and how performance varies across
environments and interaction settings. Given the rich interest in this area over the recent years,
we feel that the development of a social robot navigation scale is a crucial missing element and an
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important line of research. Relatedly, we observe a lack of benchmarks and concrete performance
metrics that would enable systematic testing. The introduction of such tools in conjunction
with recent efforts on the design of simulation environments [26, 74] will enable standardized
benchmarking and a smoother transition from simulation to real-world deployment.
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