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ABSTRACT 
We present FLEX-SDK: an open-source software development kit 
that allows creating a social robot from two simple tablet screens. 
FLEX-SDK involves tools for designing the robot face and its facial 
expressions, creating screens for input/output interactions, con-
trolling the robot through a Wizard-of-Oz interface, and scripting 
autonomous interactions through a simple text-based programming 
interface. We demonstrate how this system can be used to replicate 
an interaction study and we present nine case studies involving 
controlled experiments, observational studies, participatory design 
sessions, and outreach activities in which our tools were used by re-
searchers and participants to create and interact with social robots. 
We discuss common observations and lessons learned from these 
case studies. Our work demonstrates the potential of FLEX-SDK to 
lower the barrier to entry for Human-Robot Interaction research. 

CCS CONCEPTS 
• Human-centered computing → User interface programming. 
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1 INTRODUCTION 
Social robots have become increasingly ubiquitous in a wide range 
of applications from healthcare to education. A number of large 

∗
Both authors contributed equally to this research. 

This work is licensed under a Creative Commons Attribution International 
4.0 License. 

UIST ’22, October 29-November 2, 2022, Bend, OR, USA 
© 2022 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-9320-1/22/10. 
https://doi.org/10.1145/3526113.3545707 

face
screen

I/O
screen

realtime
database

robot configuration 
& actions

user inputs 
& sensor data PROGRAMMER

USER

Face design 
tool

I/O display 
design tool

Setup and 
admin tool

on
 ro

bo
t’s

 b
ro

w
se

r
on

 p
ro

gr
am

m
er

’s
 b

ro
w

se
r

Face 
rendering 
tool

I/O 
display 
rendering 
toolVirtual robot rendering tool

Wizard-of-Oz 
tool

Text-based 
programming 
tool

FLEX-SDK

Figure 1: FLEX-SDK consists of browser-based tools for (i) 
creating interaction content for a social robot, (ii) rendering 
such content on the robot, (iii) direct user control of the ro-
bot (Wizard-of-Oz), and (iv) programming the robot to au-
tonomously interact with users. 

companies and start-ups have recently created impressive social ro-
bot products, while more research platforms have become available 
at lower price points. Despite this rapid growth, social robots are 
still far from being accessible to anyone who can think of a good 
application for them. Creating a social robot application currently 
requires committing to a robot platform with a specifc form factor 
and learning robot-specifc programming tools. These tools often 
require software development expertise and restrict the level of 
customization possible. As a result, the community of social robot 
application developers is still small and exclusive, and the variation 
of social robots used in research and practice is limited [6]. Our 
goal is to address this problem. 

We aim to enable anyone who can envision a social robot to be 
able to create it without having to purchase a specifc hardware 
platform and without having to install and learn complex software 
frameworks. To that end, we developed FLEX-SDK: an open-source 
software development kit for creating social robots. FLEX-SDK in-
volves tools for (i) creating interaction content for a social robot, (ii) 
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rendering that content on a social robot, (iii) controlling the robot 
through a Wizard-of-Oz style interface, and (iv) programming the 
robot to operate autonomously. Although FLEX-SDK can be used 
with many diferent types of social robots, its canonical use assumes 
that the robot has one screen for displaying the robot’s face and 
another touch-screen for input/output interactions with the user. 

In this paper we frst describe the system and its implementation, 
and we demonstrate how it can be used to create diferent social 
robots and human-robot interactions. We then present nine case 
studies in which FLEX-SDK was used to create robots as part of an 
HRI research and outreach. We distill some observations across the 
diferent case studies and discuss the potential impact of FLEX-SDK 
if adopted by the Human-Robot Interaction (HRI) community. 

2 RELATED WORK 
In this section, we review the diferent eforts made within industry 
and research labs to make programming accessible. 

2.1 Programming Commercial Robots 
All programmable social robots on the market come with a software 
development kit. SoftBank’s NAO1 

and Pepper2, two of the most 
widely used social robots, are programmed through a software tool 
called Choregraphe [24], which allows block-based programming 
primarily focused on moving the robot through diferent poses and 
is extensible through a Python application programming interface 
(API) and a custom dialog specifcation language. The small Cozmo

3 

robot has a Python based API with fxed interaction content (e.g., 
facial expressions, expressive movement animations). Misty

4
, which 

is advertised a robot development platform, has a JavaScript SDK 
involving a suite of tools similar to the ones in FLEX-SDK, such as a 
browser based command center, API explorer, and skill runner. 

2.2 Programming Social Robots 
Several eforts within the HRI research community share our goal 
of making it easier to program social robots and have contributed 
new systems for programming existing root platforms. For example, 
Lourens et al. developed TiViPE to enable rapid programming of 
the NAO robot for robot-assisted autism therapy [19, 20]. Rietz et al. 
created an accessible interface only for the Pepper robot, enabling 
non-programmers to conduct WoZ experiments [25]. Datta et al. 
created RoboStudio for programming interactions with a health-
care robot [11]. Interaction Composer [13, 14] is a system with 
a fow-based interface for programming HRI applications on the 
social mobile Robovie platform. Saupe et al. developed Interaction 
Blocks [26], also for the NAO robot, to provide a faster way of 
designing human-robot interactions based on common interaction 
patterns. The RoVer system by Porfrio et al. build on this work 
to automatically verify that an interaction composed of interation 
blocks satisfes selected interaction norms, such as “the robot should 
not interrupt the human’s speech while the human has the speaking 
foor" [23]. Another recent system called Interaction Flow Editor 

1
NAO Robot: https://www.softbankrobotics.com/emea/en/nao 

2
Pepper Robot: https://www.softbankrobotics.com/emea/en/pepper 

3
Cozmo Robot: https://ankicozmorobot.com/ 

4
Misty Robot: https://www.mistyrobotics.com/ 
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Figure 2: Examples of robots that were created or augmented 
with FLEX-SDK. The top row shows robots that have only 
one screen used as a face: (a) and (b) are non-actuated robots, 
while (c) is an existing mobile robot platform (Turtlebot 2) 
and (d) is an existing mobile manipulation platform (Fetch) 
augmented with a simple social face for human interactions. 
The bottom row has robots with two screens: (e) and (g) have 
the second screen attached to the robot, while (f) has the 
user holding it. While (e) and (f) are non-actuated, (g) has a 
4-degree-of-freedom neck-and-base mechanism that is also 
controlled through FLEX-SDK. 

(IFE) was developed for the Jibo platform and is intended for rapid 
prototyping of interactions. 

Our work shares the goal of these systems and has many shared 
features, but it is unique in that it is not designed for an existing 
robot platform but rather for creating a new platform or augmenting 
an existing one. The explicit separation of content creation and 
programming is a property of FLEX-SDK that is shared with fewer 
existing systems. 

2.3 Programming Robots 
Researchers in the HRI community have also contributed program-

ming systems for robots that are not necessarily social or designed 
for interaction. The task of programming and testing the robot 
is itself a key interaction that end-users of functional robots who 
have varying technical expertise might need to engage in. Such sys-
tems include ROS Commander [21], RoboFlow [2], and Code3 [16] 
designed for the PR2 robot; CoStar [15, 22] designed for a collabo-
rative Kuka industrial robot; and iCustomPrograms designed for 
Savioke’s hotel delivery robot [10, 17]. Other related work includes 
a WoZ system intended for participatory design of interactions, for 
capturing data from the operator to learn autonomous programs 
[27]. A recent literature survey by Ajaykumar et al. provides details 
on many of these systems as well as a framework for how they 
can be categorized and evaluated [1]. While the development of 
programming systems that are not social/interactive is important 
for certain robotics applications, such as manufacturing, the work 
we present in this paper targets social robotics. 

https://www.softbankrobotics.com/emea/en/nao
https://www.softbankrobotics.com/emea/en/pepper
https://ankicozmorobot.com/
https://www.mistyrobotics.com/
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Figure 3: Screenshot of the FaceEdit tool in FLEX-SDK show-
ing the diferent face attributes (continuous, color, or binary) 
that can be changed. 

3 SYSTEM DESCRIPTION 
FLEX-SDK consists of software tools for creating interaction content, 
rendering the content on the robot, controlling the robot through 
a Wizard-of-Oz interface, and programming the robot to operate 
autonomously (see Fig. 1). In this section, we describe the diferent 
tools that are part of this system. 

3.1 Robot Embodiment 
FLEX-SDK is intended for interactive social robots that have a screen-
based rendered face, as it provides ways to design digital robot 
faces and programmatically control it. In addition to the face, the 
robot may also have a second screen for displaying information 
and/or getting input from the user. The second screen can either be 
attached to the robot or external. Figure 2 shows examples of robots 
with various embodiments that were created and programmed using 
versions of FLEX-SDK, including ones with one or two tablets with 
diferent confgurations of the second tablet. 

3.2 Content Creation Tools 
Rather than providing a fxed set of robot screens or requiring 
programmers to set the content of screens completely programmat-

ically, FLEX-SDK provides tools for designing two screens (robot 
face or input/output) through direct manipulation. 

3.2.1 FaceEdit. The FaceEdit tool in FLEX-SDK allows users to cre-
ate social robot faces from basic face elements like eyes and mouth. 
A survey of existing screen-based robot faces by Kalegina et al. 
identifed the diferent elements that such faces can include, as 
well as the diferent parameters of each element that can be varied 
[18]. Figure 3 shows a screenshot of the FaceEdit tool. The tool has 
radio buttons for binary parameters (e.g., hasMouth?, hasPupil?) 
and sliders for continuous parameters (e.g., vertical eye position, 
distance between eyes, pupil size). In addition, it has color selectors 
for changing the color of the diferent elements. The tool includes 
a preview rendering of the face that changes as the programmer 

Amazon Astro Moxie

Samsung Carebot Misty

LuxAI robot

Cozmo

Figure 4: Examples of commercial robots with screen-based 
faces and faces recreated using the FaceEdit tool in FLEX-
SDK, showing the expressivity of our tool. 

interacts with the attribute controls. The programmer can name 
the faces they create and browse previously created faces to edit, 
copy, or delete them through FaceEdit. 

With 28 attributes that can be modifed, FaceEdit allows creating 
a wide range of robot faces. To demonstrate this variety, we recre-
ated the faces of six popular social robots that have screen-based 
robot faces, as shown in Figure 4. 

3.2.2 IOEdit. To enable interactions through a second input/output 
tablet, FLEX-SDK provides the IOEdit tool which allows designing 
interaction screens that can involve a combination of large and 
small text, a slider, an image, buttons, and checkboxes (see Figure 5). 
The tool provides predefned templates with a diferent combination 
of elements. Each element can be directly edited while a rendering 
of the screen, and the way it would look on the robot screen is 
updated. The process of creating I/O screens closely resembles the 
creation of slides (e.g., Powerpoint, Keynote). IOEdit allows the 
user to name their screens and to browse the diferent screens they 
created to edit or delete them. 

3.3 Additional Robot Capabilities 
3.3.1 Actions. In addition to setting the visual displays, FLEX-SDK 
enables the use of speakers on the robot screens for making sounds 
or using text-to-speech to say something. For robots that have ad-
ditional actuators (e.g., the 4 Degree-of-Freedom robot shown in 
Fig 2(g)), FLEX-SDK is further extended to provide a control inter-
face, in the same way screen-based actions are controlled, both 
programmatically and through the WoZ interface (see section 3.7). 

3.3.2 Perception. To enable robust, error-free social interactions 
with users, FLEX-SDK relies on obtaining user input thorough a 
touch screen via the input elements added to the I/O screen with 
IOEdit. In addition, we take advantage of the microphone available 
on most tablet screens to enable speech input from users. Program-

mers can defne a fxed set of commands that can be recognized 
and used as part of the robot’s interaction. 
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Figure 5: Screenshot of the IOEdit tool in FLEX-SDK showing 
the list of available screen templates. 

3.4 Rendering Tools 
The robot face and I/O screens created by the programmer are 
rendered on two separate screens on the robot. The face renderer 
automatically animates the designed faces by adding natural eye 
blinking. In addition, it can modify the gaze direction of the robot’s 
eyes by moving the inner part of the eye relative to the outer part. 
The gaze direction can be set programmatically or through the WoZ 
interface (see section 3.7). 

In addition to the facial features, the face can have text displayed 
at the top of the screen, appearing like a speech bubble. This text is 
similarly set programmatically or through the WoZ interface. The 
face rendering tool also produces the commanded robot sounds 
and utterances. The I/O screen rendering tool displays the designed 
I/O screens and detects when a user input is provided through 
the screen. It receives commands to enable and disable speech 
recognition and detects when a speech command is received. 

In addition to rendering the face and I/O screens on two separate 
screens on a robot, as in the examples shown in Figure 2, FLEX-SDK 
provides a virtual social robot by rendering the two screens onto 
a simple digital robot image (see Figures 1, 13, 8). This acts as a 
simulation of the social robot and allows easy testing and debugging 
on a single computer, simply by opening the virtual robot renderer 
on a separate browser window. 

3.5 Application Programming Interface (API) 
The combination of capabilities described in the previous sections 
results in a rich set of functions for creating interactions with so-
cial robots created in FLEX-SDK. These functions are collectively 
referred to the application programming interface (API) of the 
system. FLEX-SDK has a dynamic API that evolves as the program-

mer creates additional content for their robot. The basic set of 
functions in the API includes: setFace(faceIndex), setSpeechBub-
ble(text), setScreen(screenIndex), setLargeInstruction(screenIndex, 
text), (sliderValue) getSliderValue(), (butonName) waitForButon(), 
(commandName) waitForSpeech(), speak(text), playSound(sound-
Index), and sleep(duration). 

Figure 6: Text-based programming tool in FLEX-SDK. 

3.6 Programming Tool 
The programming tool in FLEX-SDK allows creating text based pro-
grams with functions in the API (see section 3.5). The programming 
language is JavaScript. Although many programs can be a simple 
scripted sequence of robot commands from the API, allowing the 
use of a general purpose programming language like JavaScript 
enables the programmer to create programs with arbitrary com-

plexity. This includes ability to create variables and lists, loops and 
conditionals, as well as functions that can be key to creating more 
intricate programs for not just enabling a particular interaction, but 
also automating parts of an HRI user study. All functions in the API 
that correspond to robot actions are non-blocking; i.e., the function 
call in the program only starts the action and does not wait for 
the action to be complete before moving onto the next line in the 
program. To capture the end of an action, the program needs to 
explicitly involve an ‘await’ command with the associated waiting 
function, e.g., ‘waitForSpeakEnd()’. Event-based user inputs such 
as pressing a button are similarly captured with ‘await’ commands. 

The programming tool allows the user to browse and copy ex-
isting programs, edit their own programs in a syntax-highlighted 
editor, and run the program on a robot. The tool also has a button 
“Show robot functions” that displays the robot API with a descrip-
tion of each function and its parameters, including an example. The 
shown API is automatically adapted to include the user created 
content (faces, screens, sounds) that has been added onto the robot. 
A screenshot of the programming tool is shown in Figure 6. 

3.7 Wizard-of-Oz Tool 
In addition to the programming tool, commands can be issued to 
the robot directly through the Wizard-of-Oz tool in FLEX-SDK. This 
tool allows programmers to get familiar with the API and test the 
content that they have created as part of an interaction. It also en-
ables WoZ studies to be performed before doing any programming 
or as an alternative when programming is not possible. For instance, 
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Figure 7: Wizard-of-Oz (WoZ) tool in FLEX-SDK. 

if the interaction requires the robot to perceive the environment or 
understand human speech at a level that is currently not possible 
to do reliably with autonomy. 

The WoZ tool involves diferent interface elements for command-

ing the various API functions. For example, it displays the set of 
faces that have been added to a robot and the operator ("wizard") 
can set the robot’s current face simply by clicking on the desired 
face. They can set the I/O screen by clicking on a button with the 
corresponding name for each screen. The operator can also make 
the robot speak or set the text in the speech bubble on the robot 
face by typing the text and pressing a button. In addition, the WoZ 
interface includes buttons for setting the gaze direction of the robot, 
which has the options none (looking straight), up, down, left, right, 
and random (periodically changing to look in a diferent direction). 
The interface has also been extended to include sliders to control 
robot joints for the actuated robot neck shown in Figure 2(g). A 
preview of the robot is shown in the interface for awareness of the 
operator. 

4 DEMONSTRATION 
To give a better understanding of how FLEX-SDK can be used to 
create social robot interactions, we present a walk through of a 
particular use case. The chosen use case is to create a social robot 
and program it for a user study replication. In particular, we chose 
the study by Gillet et al. [12] which won the award for “best HRI user 
study paper” at the ACM/IEEE International Conference on Human-

Robot Interaction (HRI) 2021. The study involves a non-articulated 
robot head with a back-projected face (Furhat5 

robot). It investigates 
how the robot’s gaze behavior impacts human participation in an 
interaction involving two humans collaborating in a game. The 
two participants play the game called “with other words” which 
involves describing a given word to the robot without saying the 
word. The robot listens to the humans and tries to guess the word 
based on what they say. As part of its listening, it shifts its gaze 

5
Furhat Robot: https://furhatrobotics.com/ 

Figure 8: Screenshots of the robot face and user tablet in the 
replication study demonstration described in section 4. 

between the two humans. The study involves manipulating the 
gaze shifting behavior across the diferent conditions. 

Step 1 - Create robot faces — The key robot actions required for 
the study are shifting gaze to look at the two participants and 
speaking to guess the word being described. The face that we 
designed to replicate the study therefore has large human-

like eyes that make gaze shifts noticable (see Figures 7 and 
8). This is achieved through the FaceEdit tool by reducing 
the inner eye parameter which specifes the ratio of the iris 
relative to the outer eye size. The color of the face is chosen 
to be similar to the one in the original study and the default 
facial expression is neutral-to-positive. Two additional faces 
were created: one with the speech bubble to augment the 
robot speech when guessing, and another more positive face 
with a smile and raised cheeks for when the robot correctly 
guesses the word. 

Step 2 - Create I/O screens — The study involved giving partic-
ipants an iPad which displayed the word that they had to 
describe to the robot, together with an image of the word that 
was displayed for a few seconds in case the less profcient 
speaker did not know the meaning of the word. The image 
was removed 8 seconds later to avoid distracting participants. 
The screen also had a timer counting down 60 seconds for 
each word. We used the robot’s I/O screen to enable this 
interaction. We created diferent screens for the introduction 
of the study, for displaying the word with and without the 
image and for transitioning to the next word after a timeout 
or correct guess. Examples are included in Figures 5 and 8. 

Step 3 - Wizard of Oz test — As in the pilots of the original study, 
we can recreate the game playing interactions through the 
WoZ interface once the contents in the frst two steps have 
been created. The screenshot of the WoZ tool shown earlier 
(see Figure 7) is in fact what it looks like as part of this 
replication study. For this study the operator would need to 
use the buttons to set the faces and the diferent I/O screens, 
the text entry for guessing the words with speech and the 
speech bubble, and the gaze direction buttons to shift gaze 
based on the strategy they are emulating. Despite the rather 
fast pace of the game our tests indicate that WoZ is feasible 
for this study with the tool provided in FLEX-SDK. 

Step 4 - Programming the interaction — The last step in creat-
ing an autonomous interaction is to write a program with 
the API functions using the programming tool. Figure 6 
shows a program created for the replication study, with a 

https://furhatrobotics.com/
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Figure 9: Pictures of robots created with FLEX-SDK being 
used as part of case studies: (a) Robot and WoZ console for a 
user study investigating how a social robot’s disclosure im-
pacts the participant’s response; (b) a participant interacting 
with the robot in CS-1; (c) a participant interacting with the 
robot created with FLEX-SDK for a study investigating user 
preferences for interaction modalities, comparing the phys-
ical robot to a robot on a screen and in VR in CS-2; (d) a par-
ticipant interacting with a robot created with FLEX-SDK; (e) 
another participant operating the robot through FLEX-SDK 
WoZ tool in a participatory design study investigating how 
a robot should respond while listening to a user talk about 
their stress in CS-3; (f) a participant in CS-3 working with 
the FaceEdit tool to design a robot face that would feel most 
attentive and welcoming to them. 

few simplifcations. In particular, the exact replication of 
the functions getNextGazeTarget() and getNextWordGuess() 
would require additional functionalities (e.g., getting speech 
separately from each speaker, computing distance between 
words using Word2Vec embeddings) which are possible but 
beyond the scope of this illustrative demonstration. Instead 
simpler, randomized versions of these functions were imple-

mented for illustration. Screenshots of the simulated robot 
and the I/O tablet from running this program are shown 
in Figure 8, illustrating how the robot can look at the two 
participants on diferent sides and how the I/O tablet can 
guide the participants’ interaction as part of the study. 

5 SYSTEM IMPLEMENTATION 

5.1 Overview 
FLEX-SDK is browser based and implemented with HTML, CSS, and 
JavaScript. The core of the system is a real-time database that con-
tains all information of the users and robots. Each tool is a web 
page that runs on a browser and communicates with the database to 
receive data and update the database based on the user or program-

mer input. The browsers on the robot screens run the two rendering 
tools, while the browser on the programmer’s computer run one 
of the other tools. All content that is created by the programmer 
(faces, I/O screens, programs) are pushed to the database and are 
continuously updated during the editing process. They are initially 
stored under user data but can be copied over to a particular robot 
entry in the database through a setup tool. 

Figure 10: Robots created by participants using the FaceEdit 
tool in FLEX-SDK as part of CS-4. 

In addition to the added content, each robot entry in the database 
has parameters associated with its current state, e.g., the index of 
the current face or screen that it is displaying, current gaze direction, 
or the text currently displayed in its speech bubble. The face and 
I/O screen rendering tools use this state information as part of its 
rendering process. When a robot program executes a command or 
a command is issued through the WoZ interface, the command is 
transmitted to the robot through these robot state entries in the 
database. The programming or WoZ tools write onto the realtime 
database, which immediately pushes this change to the rendering 
tool, triggering a re-rendering to refect the state change. 

5.2 Implementation Details 
FLEX-SDK is completely open source and lives in a GitHub reposi-
tory

6
. The tools are hosted directly through GitHub Pages7. The 

realtime database used for implementation is Firebase8. When a pro-
grammer opens the tool in a new browser, they are automatically 
authenticated on Firebase with an anonymous user id, allowing 
them to already create content, render a robot, and interact with 
the robot. For continuity across devices, programmers can log in 
with a Google account. FLEX-SDK is currently tested only with a 
Chrome browser. The robot screen renderings are tuned assuming 
proportions of a Nexus 7 tablet. 

5.3 Documentation 
The GitHub page of FLEX-SDK has a wiki9 

describing the system and 
guiding the programmer through the use of the various tools. It is 
populated with instructional materials to allow a new programmer 
to create robot programs completely on their own. This includes 
tutorials for (1) starting and testing a robot, (2) remotely controlling 
a robot, (3) running existing programs on a robot, (3) confguring 
a robot and managing content, (4) creating new robot faces, (5) 
creating new robot I/O screens, and (6) writing new programs. 
In addition, the wiki involves documentation to help experienced 
programmers to contribute to FLEX-SDK software, to fx bugs and 
implement new features. 

6
FLEX-SDK code: https://github.com/mayacakmak/emarsoftware 

7
FLEX-SDK tools: https://mayacakmak.github.io/emarsoftware/ 

8
Firebase: https://frebase.google.com/ 

9
FLEX-SDK wiki: https://github.com/mayacakmak/emarsoftware/wiki 
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Table 1: A summary of the nine case studies in which FLEX-SDK was used for research and outreach. 

Study name & citation Year Study type Programmers Users Tools used 

CS-1 Disclosure [7] 2018 Controlled experi- Undergrad researchers Participants (N=36) FaceEdit, WoZ 
ment (N=2) 

CS-2 Robot vs. XR [8] 2019 Controlled experi- Undergrad/grad re- Participants (N=66) FaceEdit, IOEdit, 
ment searchers (N=3) WoZ 

CS-3 Teen operators [9] 2019 Observational Participants (N= 20) same participants FaceEdit, WoZ 

CS-4 Isolation companion [4] 2020 Participatory design Participants (N=16) same participants FaceEdit 

CS-5 Intervention design [5] 2020 Participatory design Undergrad researchers Participants (N=30) FaceEdit, IOEdit, pro-
(N=3) gramming 

CS-6 Robot vs. workbook [5] 2021 Controlled experi- Undergrad researchers Participants (N=19) FaceEdit, IOEdit, pro-
ment & observational (N=2) gramming 

CS-7 Embodiment kit [3] 2021 Participatory design Undergrad researchers Participants (N=41) FaceEdit, IOEdit, 
(N=2) WoZ 

CS-8 CS Women outreach, learning 2019 Rapid prototyping Participants (N=8) same participants FaceEdit, IOEdit, 
user-centered design WoZ 

CS-9 High-school outreach, learning 2019 Rapid prototyping Participants (N=8) same participants FaceEdit, IOEdit, pro-
basic programming gramming 

6 CASE STUDIES 
In this section we demonstrate how FLEX-SDK has been used as part 
of real human robot interaction studies and in outreach activities 
across nine case studies. Table 1 summarizes these case studies 
indicating which subset of FLEX-SDK tools were used in the study, 
the type of study in which the tools were used (e.g., participatory 
design session, observational study, controlled experiment, out-
reach), and who the programmers using FLEX-SDK tools and the 
users interacting with the created robots were. In the following we 
describe each case study in more detail and present observations 
about how FLEX-SDK was used in each of them. 

Case Study 1. The frst study involved designing a simple social 
robot (see Figure 9(a)) and using it to investigate how a user re-
sponds to diferent amounts and types of disclosure by the robot 
(see Figure 9(b)). The robot was operated through the WoZ interface 
populated with preset utterances (provided through the FLEX-SDK 
set up tool) to avoid typing during the study. The programmers 
who used FLEX-SDK were two undergraduate researchers (one from 
Psychology and other from Informatics) working on the project 
over the summer. The participants who interacted with the robot 
were recruited from a college population (N=36). 

Case Study 2. The second case study involved another controlled 
experiment comparing the simple interactions with a mental health 
support robot with a virtual version of the robot on a screen or in 
Virtual Reality (VR). The physical robot was designed with FLEX-
SDK content creation tools and controlled through the WoZ tool 
during the experiment. 

Case Study 3. The third case study involved co-design sessions 
with teens to investigate how a robot listener should behave while 
a teen user shares their stressors with it. Teen participants acted as 

both the robot operator (see Figure 9(e)) and the user (see Figure 
9(d)) to enact the dialog between the robot and the user. The opera-
tors used the WoZ tool to choose from a set of preset utterances 
or type their custom response. Participants who had extra time 
at the end also used the FaceEdit tool to design a face for the ro-
bot listener that would be welcoming and attentive (see Figure 9(f)). 

Case Study 4. The next case study involved teen participants dur-
ing the COVID-19 lockdown working to design a simple social 
robot companion in their home. Participants received a small tripod 
and used simple fabrication materials to create a robot embodiment 
around it. They used the FaceEdit tool to design the face of their 
robot. A variety of robots they created is shown in Figure 10. 

Case Study 5. The ffth study involved participatory design of 
mental health support robots based on established evidence-based 
interventions, including Dialectic Behavioral Therapy (DBT) and 
Acceptance-Commitment Therapy (ACT). Three undergraduate 
researchers used tools in FLEX-SDK to create robot interactions that 
involve exercises from DBT and ACT. They iteratively refned the 
robot design and the interactions with feedback from teenagers 
over Zoom after they interacted with the virtual robot. Examples of 
virtual robot screens for diferent activities are shown in Figure 13. 

Case Study 6. The next case study was a controlled experiment 
comparing the efect of a selected list of activities designed in CS-5, 
with worksheet-based activities that are currently used in practice. 
Participants had access to 10 diferent activities on a virtual robot 
during the course of a week and could freely interact with it. 

Case Study 7. The seventh case study focused on the embodiment 
design for an actuated 4 Degrees-of-Freedom (DoF) robot core with 
two tablets. Participants from target user groups across three appli-
cation areas (education, healthcare, community engagement) used 
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(a) (b)

(c)

Figure 11: (a) Three children using the FaceEdit tool in FLEX-
SDK to design a robot that would help them learn English 
as part of CS-7 and (b) two others showing their design. (c) 
Robot embodiment examples designed for diferent appli-
cations in CS-7 where participants used the FaceEdit and 
IOEdit tools to create the face and belly screens of their 
robots. 

fabrication materials to design the robot embodiment and used the 
FaceEdit tool in FLEX-SDK to create the robot face that completes the 
robot’s look. Figure 11(a) shows children who are English learners 
using the FaceEdit tool, and Figure 11(b) shows an example robot 
created by a pair of participants. Other robots created in this study 
are shown in Figure 11(c). In addition to designing robot faces, and 
in some cases I/O screens, the WoZ tool in FLEX-SDK was used as 
part of this case study to control the robot’s motors so participants 
could see the robot animated and test its range of motion. 

Case Study 8. This outreach activity was a two-day workshop 
designed for Women with disabilities who are studying CS and 
was intended to introduce them to an area of research. Our activity 
focused on design research and introduced the participants to meth-

ods in the human-centered design process, such as storyboarding, 
body-storming, rapid prototyping, and observational user studies. 
Participants in the workshop worked on designing robots that sup-
port mental health (similar to CS-6 an CS-7). They used FLEX-SDK 
to design the face and I/O screens for their robot (see Figure 12(a)) 
and created robot embodiment using prototyping materials. Then 
they used the WoZ tool to test the interactions that they designed 
with other workshop participants and other novice users from the 
workshop organization team (see Figure 12(b-c)). 

Case Study 9. Our second outreach workshop was similar to CS-8, 
but instead intended for high-school students with disabilities and 
lasted a week. The participants designed a robot to support mental 
health and tested their prototypes with other workshop partici-
pants (see Figure 12(d-e)). The additional time of the workshop 
also allowed them to use the programming tool in FLEX-SDK as 

(a) (c)(b)

(d) (e)

Figure 12: Case studies using FLEX-SDK as part of outreach 
activities: (a) Students setting up their robot in CS-8: a two 
day workshop for Women with disabilities in CS; (b) and (c) 
show a novice user interacting with the robots designed by 
students in CS-8; (d) and (e) show students testing robots that 
they created in CS-9: a week-long workshop for high-school 
students with disabilities. 

they started learning basic programming constructs like loops and 
conditionals. 

6.1 Observations 
We make the following observations across the case studies: 

• Enabling HRI research. Our case studies demonstrate that 
researchers with various backgrounds (including non-technical 
areas) can use FLEX-SDK to create WoZ or autonomous user 
studies to investigate HRI questions. 

• An SDK for Rapid prototyping. Beyond their use by re-
searchers to create interactions, FLEX-SDK tools like FaceEdit, 
IOEdit, and WoZ were used directly by participants to rapidly 
prototype robot looks or behaviors as part of participatory 
design studies or outreach activities. 

• Face editor for all. Participants in our case studies including 
children, teens, and adults, people with various disabilities, 
and people with various backgrounds were able to use the 
FaceEdit tool without any instruction. They were able to 
tinker with diferent control elements in this tool and see the 
impact on the rendered face. They were able to explore the 
design space of faces to fnd the combination of parameters 
the expressed the face that they had in mind. They produced 
a wide range of robot faces that are very diferent from one 
another and from the faces of existing robot platforms (see 
Figures 10, 13, 11, 12). 

• Levels of engagement. Across the diferent case studies we 
also observed that users engaged at diferent levels with 
operating and programming the robot: Level 1 – only using 
the WoZ to control the robot with existing content; Level 
2 – creating new content for the robot (new faces or I/O 
screens); Level 3 – programming. This was not intentional 
in the design of the system, but rather emerged from the 
diferent use cases and the user experience levels. 

• Simple programs. The use of the programming tool has 
so far been limited (CS-5, CS-6, CS-9) with most programs 
not taking full advantage of the available API and the ex-
pressivity of JavaScript. The example program given in Fig 



FLEX-SDK: An Open-Source Sofware Development Kit 
for Creating Social Robots 

dandelion making amends compass lemonade

Figure 13: Screenshots of virtual robots created with FLEX-
SDK as part of CS-5 where participants co-designed robot-
based interventions for mental health, and CS-6 where the 
interventions were compared to the current way those activ-
ities are performed with worksheets. 

6 is substantially more complex than any of the programs 
created by researchers and participants in our case studies. 
For example, most programs developed in CS-5 (see Figure 
13) involved the user walking through a series of screens 
and associated faces in sequence. The programs for these 
activities were simple scripts with a series of setScreen and 
setFace commands, with few places where the user input 
caused program branching through conditional statements 
or loops. 

7 DISCUSSION 

7.1 Contributions 
Our work contributes a new open-source software development 
kit for designing and programming social robots. Although the 
system achieves known functionality leveraging known techniques, 
this functionality is not readily available to HRI researchers at 
the moment. There are currently no alternative system that allow 
turning two tablets in to a social robot within a matter of minutes. 
Most existing systems comparable to FLEX-SDK were developed for 
a particular robot system rather than an open-source, customizable 
hardware. On the other hand, starting from scratch to program 
two tablets to behave like a social robot, like the ones in our case 
studies, would take weeks or months of work and would only be 
possible with extensive programming expertise. Hence, we believe 
that the system contribution of our work will be valuable to the 
HRI community. 

7.2 Potential Impact 
The diversity of case studies presented in this paper demonstrates 
the types of research that FLEX-SDK would enable within the HRI 
community. By removing the need to purchase an expensive social 
robot platform and to install and learn complex robot programming 
software, FLEX-SDK can signifcantly lower the barrier to entry for 
HRI research and diversify our community. While the research 
enabled by FLEX-SDK has been largely focused on mental health, 
the same methods and procedures could be used in a wide range 
of applications of social robots. By giving full fexibility of robot 
embodiments and ability to customize the robot look and behavior, 
FLEX-SDK can allow the discovery of new use cases for social robots 
and unexplored creative form factors (see [3] for examples). 
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7.3 Limitations 
The key limitation of FLEX-SDK, in terms of the types of autonomous 
social robot programs that can be created with it, is in the use of per-
ceptual capabilities. Even the simplest robot that consists of a single 
head tablet has a camera available, but FLEX-SDK currently does not 
provide any API functions to take advantage of camera perception. 
Since many HRI applications can beneft from such perception (e.g., 
face tracking and recognition) and given the growing availability 
of browser-based image processing capabilities, extensions of the 
API to include more perception is a high-priority for future work. 
Many other extensions of FLEX-SDK are possible. We expect the new 
features and tools in FLEX-SDK will be driven by new use cases as it 
has been in the past three years and we hope that more members 
of our community can contribute to its development. 

7.4 Lessons Learned 
FLEX-SDK has been under development for more than fve years and 
has gone through many revisions based on our experience using 
it in our research. Next we discuss some of the lessons learned in 
this process to inform future versions of the system as well as the 
development of other similar systems. 

What did users of FLEX-SDK have trouble with? 
Although we observed that participants created a wide range of 

robot faces using the FaceEdit tool (Section 6.1), they did not take 
advantage of its full expressiveness. In the space of possible robot 
faces, many participants’ faces seemed to stay close to the initial, 
default face settings (e.g., Figure 10). In contrast, we recreated faces 
of commercial robots, originally created by professional designers 
with expert animation tools, spanning a much wider range of the 
space (Figure 4). 

Similarly, although our the programming tool gives full expres-
sivity of a general-purpose programming language (JS), programs 
created across our case studies were very simple (Section 6.1). This 
seemed to be a result of our system’s way of separating content 
creation from programming. Programmers spent a lot of time cre-
ating diferent robot faces and I/O screens, but their programs 
resulted in being simply sequentially going through the screens in 
order. Although this pattern was not adopted intentionally in the 
beginning, it was reinforced by the case studies. As a result of our 
participants’ emphasis on content creation, we implemented more 
features in content creation tools rather than expand the API, in 
order to achieve a desired new functionality (e.g., ability to include 
emojis on the screen). 

What did users do that was diferent from what was expected? 
The WoZ system served an unexpected purpose for programmers 
in learning about the system’s API. Programmers who were not 
introduced to the WoZ tool would learn about the diferent func-
tions in the API by writing single-line programs and running them 
to observe the efect on the robot, and explore diferent parame-

ter settings. On the other hand, programmers who had used the 
WoZ extensively before starting to program already had an intu-
itive grasp of the API. This observation points towards a broader 
role that WoZ systems can have in learning to program robots. 
Controlling the robot through WoZ allows people to quickly get 
exposed to the full API, observe the robot in action, and get a sense 
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of the impact of diferent parameters. Programmers typically learn 
these while simultaneously trying to program. We hope to run a 
controlled study in the future to better characterize the impact of 
using WoZ in learning to program a robot. 

What did users want that the system did not have? Our sys-
tem was designed to work on a browser to maximize accessibility 
and reduce barriers to entry, and it used cloud functionality to have 
diferent parts of the system to communicate. While programmers 
appreciated the workfow enabled by this design, end-users consis-
tently stated that they would not want a robot that is connected to 
the cloud for privacy and security reasons. 

Robotics researchers who have used FLEX-SDK have been particu-
larly interested in extending the API with new actions and inputs to 
allow for more autonomous behaviors. In extending the SDK with 
new actions one insight from our studies is that we need to clearly 
distinguish between (i) instantaneous actions like ’setFace()’ and (ii) 
temporally extended actions like ’playSound()’ and allow a way to 
catch the ending of such extended actions. Without this, we ended 
up having programs where the programmers had to estimate the 
duration of a sound and add sleep() statements to their programs. 

In extending the SDK with new inputs we expect the key chal-
lenge will be making the programmer aware of possible values 
of the input–this was already an issue with inputs such as ‘wait-
ForButon()’ where the user themselves named the buttons. It will 
become a bigger challenge with camera or microphone input that 
can return continuous values or infnitely many discrete values, or 
can return with an error. As with actions, maintaining the distinc-
tion between waitFor_ and get_ statements is also important for 
maintaining the intuitiveness with such input extensions. 
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